Digital Voice Systems, Inc.
END USER PRODUCT License Agreement

This non-exclusive END USER PRODUCT License Agreement (EUPLA) is a legal agreement between the customer of this PRODUCT (the END USER) and Digital Voice Systems, Inc. (DVSI) covering the terms and conditions under which this DVSI PRODUCT and DVSI’s proprietary content (that may consist of and is not limited to software, hardware, documentation and other material) is licensed to the END USER.

1. Preliminary Statements and Definitions

1.1 By installing, or otherwise using this PRODUCT the END USER agrees to be bound by the terms and conditions set forth in this EUPLA. If the END USER does not agree to the terms and conditions set forth in this EUPLA, then the END USER must not install or use the PRODUCT and shall immediately return the PRODUCT to DVSI as set forth in Section 13.

a) The PRODUCT shall mean the Hardware, Software, Documentation and other materials that were provided by DVSI, either directly or indirectly through distributors or third parties, to the END USER as part of a sale, delivery or other transaction.

b) Hardware can be in the form of Integrated Circuits (such as Digital signal Processors), Circuit boards and electronics enclosed in a chassis. DVSI’s Vocoder Chips (AMBE-3000™, AMBE-4020™, etc…) are an example of an Integrated Circuit.

c) Software can be in form of computer code, firmware masked into an IC or stored or embedded into ROM or RAM or Flash memory, or software stored on any media (such as CD-ROM, floppy disk, hard drive, solid-state memory or the Internet)

d) Documentation means written or electronic information, including user manuals, technical documents, training materials, specifications or diagrams, that pertain to or are delivered with the PRODUCT in any manner (including in print, on CD-ROM, or on-line).

1.2 DVSI has developed a number of voice coding methods and algorithms (the “Technology”) which include DVSI’s Advanced Multi-Band Excitation (“AMBE®”), AMBE+™, and AMBE+2™ voice coders. The Technology codes speech at low bit rates and may include error correction, echo cancellation and other auxiliary functions.

1.3 “DVSI Voice Compression Software” shall mean the voice coding Software that implements or embodies the Technology and is embodied into or otherwise provided with the PRODUCT.

1.4 “DVSI Voice Codec” shall mean the DVSI Voice Compression Software, any PRODUCT Hardware into which the DVSI Voice Compression Software is embedded or executed and any associated Documentation.

1.5 DVSI represents that it owns certain “Proprietary Rights” in the PRODUCT including patent rights, copyrights, trademarks and trade secrets. These rights include one or more of the following US Patents #6,912,495; #7,970,606; #8,036,886; #8,200,497; #8,315,860; #8,359,197; #8,433,562; and #8,995,002; and under other US and foreign patents, related patents and patents pending. AMBE®, AMBE+™ and AMBE+2™ are registered trademarks and trademarks of Digital Voice Systems, Inc.

1.6 “END USER” shall mean the person and/or organization to whom the DVSI Vocoder Product (software or hardware) was delivered or provided to as specified in the purchase order or other documentation. In the event that the END USER transfers his rights under this license to a third party as specified in Section 3.0, then this third party shall become an “END USER”.

1.7 DVSI reserves the right to make modifications and other changes to its products and services at any time and to discontinue any product or service without notice.

2. License Granted

2.1 Subject to the conditions herein and upon initial use of the DVSI Product, DVSI hereby grants to END USER a non-exclusive, limited license to use the DVSI Voice Compression Software and Technology solely as included by DVSI within the PRODUCT. No license, either expressed or implied, is granted for any use of the DVSI’s Proprietary Rights on any other device or Hardware or in any manner other than within the original unmodified PRODUCT purchased from DVSI. No license is granted to copy or modify the DVSI Voice Compression Software or the PRODUCT either in whole or in part.

2.2 No license, right or interest in any trademark, trade name or service mark of DVSI is granted under this Agreement. END USER acknowledges that the PRODUCT may contain trade secrets of DVSI, including but not limited to the specific design, and associated interface information.

2.3 END USER shall not copy, extract, reverse engineer, disassemble, decompile or otherwise reduce the DVSI Voice Compression Software to human-readable form. END USER shall not alter, duplicate, make copies of, create derivative works from, distribute, disclose, provide or otherwise make available to others, the DVSI Voice Compression Software and Technology and/or trade secrets contained within the PRODUCT in any form to any third party without the prior written consent of DVSI. The END USER shall implement reasonable security measures to protect such trade secrets.

2.4 This is a license, not a transfer of title, to the DVSI Voice Compression Software, Technology and Documentation, and DVSI retains ownership and title to all copies.

3. Transfer of License

3.1 The END USER shall have the right to transfer the rights under this EUPLA to a third party by providing the third party with a copy of this EUPLA and obtaining the third parties agreement to all the terms and conditions under this EUPLA. In the event END USER does transfer their rights to a third party in accordance with this EUPLA, then the third party transferee shall become the new END USER and all rights under this EUPLA shall terminate with respect to the transferor in accordance with Section 4.

4. Term and Termination

4.1 This Agreement is effective upon initial delivery of the PRODUCT and shall remain in effect until terminated in accordance with this agreement.

4.2 This Agreement shall terminate automatically without notice from DVSI if END USER fails to comply with any of the material terms and conditions herein. END USER may terminate this Agreement at any time upon written notice to DVSI certifying that END USER has complied with the provisions of Section 13.

4.3 Upon termination of this Agreement for any reason, END USER shall: (a) discontinue all use of the PRODUCT; (b) return the PRODUCT and documentation purchased or acquired, or in Licensee’s possession, to DVSI; (c) have no further rights to any DVSI Software or the Technology without a separate written license from DVSI; All confidentiality obligations of Customer and all limitations of liability and disclaimers and restrictions of warranty shall survive termination of this Agreement. In addition, the provisions of the sections titled “U.S. Government End User Purchasers” and
"General Terms Applicable to the Limited Warranty Statement and End User License" shall survive termination of this Agreement.

5. Payments

5.1 In consideration of the materials delivered as part of the PRODUCT, and in consideration of the license granted by DVSI for the PRODUCT, and in consideration of DVSI's performance of its obligations hereunder, the END USER agrees to pay to DVSI the fees as specified in DVSI's invoice. Payments of fees shall be received by DVSI prior to shipment of the PRODUCT.

6. Proprietary Notices

6.1 END USER shall maintain and not remove or alter any copyright or proprietary notice on or in the PRODUCT.

6.2 Reproduction of non-proprietary information found in DVSI Users Manuals or data sheets is permissible only if the END USER reproduces without alteration, and includes all copyright and other proprietary notices, all associated warranties, conditions and limitations on all copies, in any form.

7. Proprietary Information

7.1 The parties agree that the PRODUCT shall be considered Proprietary Information.

7.2 Except as otherwise provided in this Agreement, END USER shall not use, disclose, make, or have made any copies of the Proprietary Information, in whole or in part, without the prior written consent of DVSI.

8. Limited Warranty

8.1 DVSI warrants the PRODUCT to be free from defects in materials and workmanship under normal use for a period of ninety (90) days from the date of delivery. The date of delivery is set forth on the packaging material in which the Product is shipped. This limited warranty extends only to the Customer who is the original purchaser. If the PRODUCT is found to be defective and the condition is reported to DVSI, within the warranty period, DVSI may, at its option, repair, replace, or refund of the purchase price of the PRODUCT. DVSI may require return of the PRODUCT as a condition to the remedy.

Restrictions. This warranty does not apply if the PRODUCT (a) has been altered, (b) has not been installed, operated, repaired, or maintained in accordance with instructions supplied by DVSI, (c) has been subjected to abnormal physical or electrical stress, misuse, negligence, or accident;

8.2 Except as stated in Section 8.1, the PRODUCT is provided "as is" without warranty of any kind. DVSI does not warrant, guarantee or make any representations regarding the use, or the results of the use, of the PRODUCT with respect to its correctness, accuracy, reliability, speech quality or otherwise. The entire risk as to the results and performance of the PRODUCT is assumed by the END USER. After expiration of the warranty period, END USER, and not DVSI or its employees, assumes the entire cost of any servicing, repair, replacement, or correction of the PRODUCT.

8.3 DVSI represents that, to the best of its knowledge, it has the right to enter into this Agreement and to grant a license to use the PRODUCT to END USER.

8.4 Except as specifically set forth in this Section 8, DVSI makes no express or implied warranties including, without limitation, the warranties of merchantability or fitness for a particular purpose or arising from a course of dealing, usage or trade practice, with respect to the PRODUCT. Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply to END USER. No oral or written information or advice given by DVSI or its employees shall create a warranty or in any way increase the scope of this warranty and END USER may not rely on any such information or advice. The limited warranties under this Section 8 give END USER specific legal rights, and END USER may have other rights which vary from state to state.

9. Limitation of Liability

9.1 The END USER agrees that the limitations of liability and disclaimers set forth herein will apply regardless of whether the END USER has accepted the product or service delivered by DVSI.

9.2 In no event shall DVSI be liable for any special, incidental, indirect or consequential damages resulting from the use or performance of the PRODUCT whether based on an action in contract, or for applications assistance, or product support, or tort (including negligence) or otherwise (including, without limitation, damages for loss of business revenue, profits, business interruption, and loss of business information or lost or damaged data), even if DVSI or any DVSI representative has been advised of the possibility of such damages.

9.3 Because some states or jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to END USER.

9.4 DVSI's maximum liability for damages arising under this Agreement shall be limited to 20% (twenty percent) of the fees paid by END USER for the particular PRODUCT that gave rise to the claim or that is the subject matter of, or is directly related to, the cause of action.

10. Taxes

10.1 All payments required under Section 5 or otherwise under this Agreement are exclusive of taxes and END USER agrees to bear and be responsible for the payment of all such taxes (except for taxes based upon DVSI's income) including, but not limited to, all sales, use, rental receipt, personal property or other taxes which may be levied or assessed in connection with this Agreement.

11. Export

11.1 DVSI represents that to the best of its knowledge, this PRODUCT has been shipped from the United States in accordance with the US Export Administration Regulations (EAR). The END USER hereby gives its assurance to DVSI that it will comply with all export and re-export restrictions and regulations of all United States government agencies and authorities as well as when applicable, European Union and other export agencies. Export regulations include and are not limited to restrictions, prohibiting export or re-export of this DVSI PRODUCT (a) into an US embargoed country or (b) to anyone person or entity named on any of the screening lists of the US Departments of Commerce, State and the Treasury. For a list of parties for which the US Government maintains restrictions on exports, re-exports or transfers of items, reference the Consolidated Screening List (CSL) which may be found at: (https://www.export.gov/article?id=Consolidated-Screening-List). By installing, or otherwise using this PRODUCT the END USER represents and warrants that the END USER is located in any such country or named on any such list.

11.2 DVSI makes no representation that an export or re-export license is or is not required, and if a license is required, that it will or will not be issued by the U.S. Department of Commerce. The END USER is solely responsible, at their own expense, for obtaining any US or other government permits, licenses or approvals required for the importing and/or exporting the PRODUCT. For up-to-date information regarding United States import / export laws and regulations please visit https://www.export.gov/.

12. Governing Law

12.1 This Agreement is made under and shall be governed by and construed in accordance with the laws of the Commonwealth of Massachusetts, (USA), except that body of law governing conflicts of law. If any provision of this Agreement shall be held unenforceable by a court of competent jurisdiction, that provision shall be enforced to the maximum extent permissible, and the remaining provisions of this Agreement shall remain in full force and effect.
This Agreement has been written in the English language, and the parties agree that the English version will govern.

13.0 Notices

13.1 Any notices to DVSI which may be given hereunder shall be sent in writing to: Digital Voice Systems Inc., 234 Littleton Road, Westford, MA, 01886, U.S.A.
Table of Contents

1 PRODUCT INTRODUCTION ...1
 1.1 Advances in Vocoder Design ..1
 1.2 AMBE-3000™ Vocoder Chip Features ..1
 1.3 Typical Applications ..2

2 HARDWARE INFORMATION ..3
 2.1 Special Handling and Moisture Sensitivity ..3
 2.2 Package Details ...4
 2.2.1 128-pin Low-Profile Quad Flat Pack (LQFP) ..4
 2.2.2 179 Pin Ball Grid Array (BGA) ..5
 2.3 Pin Assignment Layouts ...6
 2.3.1 LQFP Package ...6
 2.3.2 BGA Package Pins (Bottom View) ...7
 2.4 AMBE-3000F™ Vocoder Chip Markings ...8
 2.4.1 AMBE-3000F™ Vocoder Chip LQFP Markings ..8
 2.4.2 AMBE-3000F™ Vocoder Chip BGA Markings ..9
 2.5 Pin Out Table ..10
 2.6 Hardware Configuration Pins ..18
 2.7 Crystal / Oscillator Usage ..19
 2.7.1 External Clock Source ..19
 2.7.2 Crystal Oscillator ..19
 2.7.3 Input Clock Requirements ..20

3 ELECTRICAL CHARACTERISTICS AND REQUIREMENTS ...21
 3.1 Normal Operating Conditions ...21
 3.2 Recommended Operating Conditions ..21
 3.3 Absolute Maximum Ratings ...21
 3.4 Thermal Resistance Characteristics ..22
 3.5 Power Sequencing Requirements ..22
 3.6 Reset Behavior ..23
 3.6.1 Reset to Ready Packet Timing ..23
 3.6.2 Behavior of RTSn and TX_RDY following a RESET ..23
 3.7 Signal Transition Levels ...24
 3.8 Power-Down Sequencing: ...25
 3.9 Low Power Modes ...25
 3.9.1 Run State ..26
 3.9.2 Idle State ..26
 3.9.3 Standby State ..26
 3.9.4 Halt State ..26
 3.9.5 Power Modes ..27
 3.9.6 Low power mode when using the UART Packet Interface ...27
 3.9.7 Low Power Mode when using the McBSP Packet Interface ..27
4 INITIAL DESIGN CONSIDERATIONS ... 30
3.9.8 Low Power Mode when using the McBSP Codec Interface.......................... 27
3.9.9 Low Power Mode when using the SPI Codec Interface 28
3.9.10 Low Power Mode when using the Parallel Packet Interface 28
3.9.11 Additional Requirements when Low Power Mode is enabled 28
3.9.12 Typical AMBE-3000F™ Vocoder Chip Power Measurements 28
4 I/O MANAGEMENT... 35
5.1 Operating Modes Introduction ... 38
5.2 Codec mode ... 39
5.2.1 Timing of channel transmit packets in Codec Mode 40
5.2.2 Timing of channel receive packets in Codec Mode 41
5.2.3 I/O Handler in Codec Mode ... 42
5.3 Packet Mode .. 43
5.3.1 I/O Handler In Packet Mode ... 44
5.4 Switching between codec mode and packet mode using packets 45
5.5 SPI Interface .. 46
5.6 UART Interface .. 47
5.6.1 UART_TX Pin State .. 48
5.7 McBSP Interface .. 48
5.7.1 McBSP Selected for Codec Interface .. 48
5.7.2 McBSP Selected for Packet Interface .. 49
5.8 Parallel Interface ... 51
5.8.1 Parallel Port Packet Interface .. 51
5.9 Codec A/D / D/A Interface .. 53
5.10 Vocoder Front End Requirements ... 53
5.11 Interfacing a codec to the AMBE-3000F™ Vocoder chip 55
5.11.1 The Texas Instruments General purpose TLV320AIC14 55
5.11.2 The Texas Instruments PCM3500 General purpose codec 56
6 DATA AND CONFIGURATION PACKETS.. 58
6.1 Overview .. 58
6.2 Codec Mode Operation .. 58
Figure 10 Cascading Resets ... 23
Figure 11 TX_RDY after Reset .. 23
Figure 12 Output Levels .. 24
Figure 13 Input Levels ... 25
Figure 14 AMBE-3000F™ Vocoder Chip Power States 25
Figure 15 Power Mode States Basic Timing ... 26
Figure 16 Power Modes ... 27
Figure 17 Basic Operation .. 30
Figure 18 Typical Echo Path .. 33
Figure 19 Switching between Packet and Codec Modes 38
Figure 20 Codec Mode (SPI Interface) .. 39
Figure 21 Codec Mode (McBSP Interface) .. 40
Figure 22 TX_RDY with Skew Control Off ... 40
Figure 23 TX_RDY with Skew Control On ... 41
Figure 24 TX_RDY Timing ... 41
Figure 25 TX_RDY Frame Interval ... 41
Figure 26 TX_RDY Frame interval Examples .. 42
Figure 27 Interface BLOCK Diagram Codec Mode 43
Figure 28 Interface Block Diagram Packet Mode 44
Figure 29 Packet Mode ... 45
Figure 30 SPI Timing ... 46
Figure 31 Timing of SPI_GENSTE .. 47
Figure 32 Timing of McBSP When Selected as Codec Interface 49
Figure 33 Timing of McBSP when Selected as Packet Interface 50
Figure 34 PPT Interface Timing ... 52
Figure 35 Typical Vocoder Implementation .. 53
Figure 36 Vocoder Front End ... 54
Figure 37 Front End Input Filter Mask ... 54
Figure 38 Front End Output Filter Mask ... 55
Figure 39 AMBE-3000F™ Vocoder Chip and TLV320AIC14 Interface Block Diagram ... 56
Figure 40 AMBE-3000F™ Vocoder Chip and PCM3500 Interface Block Diagram ... 57

List of Tables
Table 1 Pinout List ... 16
Table 2 Hardware Configuration Settings ... 18
Table 3 Normal Operating Conditions ... 21
Table 4 Recommended Operating Conditions 21
Table 5 Absolute Maximum Ratings .. 22
Table 6 Thermal Resistance Characteristics 22
Table 7 Voltage Supply Pins .. 22
Table 8 Typical AMBE-3000F™ Vocoder Chip Power Measurements ... 28
Table 9 Physical Interface Selection ... 31
Table 10 Soft Decision Error Correction .. 33
Table 11 Companding Control .. 34
Table 12 Companding Selection ... 34
Table 13 ECMODE_IN Flags ... 36
Table 14 ECMODE_OUT FLAGS ... 36
Table 15 DCMODE_IN Flags ... 37
Table 16 DCMODE_OUT Flags .. 37
Table 17 SPI Interface Pins ... 46
Table 18 SPI Timing .. 47
Table 19 UART Interface Pins .. 47
Table 73 PKT_RESET Field ... 72
Table 74 Software Override of Hardware Configuration Pins 73
Table 75 PKT_RESETSOFTCFG Field ... 73
Table 76 PKT_GETCFG Field .. 74
Table 77 PKT_GETCFG Response Field .. 74
Table 78 PKT_READCFG Field ... 74
Table 79 PKT_READCFG Response Field 74
Table 80 PKT_PARITYMODE Field Format 74
Table 81 PKT_PARITYMODE Response Field 75
Table 82 PKT_WRITEI2C Field Format 75
Table 83 PKT_WRITEI2C Response Field 75
Table 84 PKT_CLRICODECRESET Field Format 76
Table 85 PKT_CLRICODECRESET Response Field 76
Table 86 PKT_SETICODECRESET Field Format 76
Table 87 PKT_SETICODECRESET Response Field 76
Table 88 PKT_DISCARDCODEC Field Format 76
Table 89 PKT_DISCARDCODEC Response Field 76
Table 90 PKT_DELAYNUS Field Format .. 77
Table 91 PKT_DELAYNUS Response Field 77
Table 92 PKT_DELAYNUS Field Format .. 77
Table 93 PKT_DELAYNNS Response Field 77
Table 94 PKT_RTSTHRESH Field Format ... 77
Table 95 PKT_RTSTHRESH Response Field 78
Table 96 PKT_GAIN Field Format .. 78
Table 97 PKT_GAIN Response Field ... 78
Table 98 Speech Packet Fields ... 79
Table 99 SPEECHD Field Format .. 79
Table 100 CMODE Field Format .. 80
Table 101 CMODE Parameters Table ... 80
Table 102 CMODE Parameters Table Key 80
Table 13 PKT_TONEXMT Field Format .. 80
Table 104 TONE Index Values ... 81
Table 105 TONE AMPLITUDE Values .. 81
Table 106 Channel Packet Fields .. 82
Table 107 CHAND Field - Format .. 82
Table 108 CHAND4 Field - Format ... 83
Table 109 SAMPLES Field - Format ... 83
Table 14 PKT_TONEGEN Field Format .. 83
Table 15 PKT_TONEDET Field Format .. 84
Table 16 PKT_TONERCV Field Format ... 84
Table 17 PKT_TONEMODE Field Format 85
Table 18 PKT_TONEMODE Field Values for “Mode” 85
Table 111 Speech Packet Example 1 .. 86
Table 112 Speech Packet Example 2 .. 87
Table 113 Channel Packet Example 1 ... 88
Table 114 Channel Packet Example 2 ... 89
Table 115 Rate Index Numbers .. 92
Table 116 Rate Control Words and Pin Settings 94
1 Product Introduction

Digital Voice Systems Inc.'s AMBE-3000™ Vocoder Chip is an extremely flexible, high-performance speech compression coder. DVSI has implemented its most advanced AMBE+2™ vocoder technology into a single DSP chip solution to achieve unmatched voice quality, with robustness to background noise and channel bit errors. DVSI’s AMBE+2™ vocoder technology outperforms G.729 and G.726 while adding additional features and benefits from DVSI’s previous industry-leading AMBE+™ Vocoder. The superior performance characteristics of the new AMBE+2™ Vocoder make it ideally suited for mobile radio, secure voice, satellite communications, computer telephony, and other digital voice and storage applications where bandwidth is at a premium and low data rate, and high-quality are both imperative.

The field-proven success of this technology has resulted in it being recognized as the standard for voice quality in communications systems around the globe. DVSI’s AMBE+2™ technology is the preferred choice for many mobile radio standards.

The AMBE-3000™ Vocoder Chip offers the affordability and mobility required by virtually all full or half-duplex mobile communication devices. Two versions of the AMBE-3000™ Vocoder Chip are available. The AMBE-3000R™ Vocoder Chip ROM version offers lower power requirements at a lower cost. Where as the AMBE-3000F™ Vocoder Chip Flash version offers a few extra features that maybe useful in certain applications. This manual covers the features and capabilities of the AMBE-3000F™ Vocoder Chip Flash version.

1.1 Advances in Vocoder Design

The AMBE-3000F™ Vocoder Chip voice coder maintains natural voice quality and speech intelligibility at rates as low as 2.0 kbits/sec. The AMBE-3000F™ Vocoder Chip provides a high degree of flexibility in selecting the speech and FEC (Forward Error Correction) data rates. The user can separately select these parameters in 50 bps increments for total rates from 2.0 kbps to 9.6 kbps. Plus, the AMBE-3000F™ Vocoder Chip offers similar features and backwards compatibility to DVSI’s AMBE-2000™ and AMBE-1000™ Vocoder Chips allowing it to be incorporated into a system that can be interoperable with these DVSI products.

1.2 AMBE-3000™ Vocoder Chip Features

The AMBE-3000™ Vocoder Chip includes a number of advanced features that are combined with low power consumption to offer the affordability, mobility and power efficiency required by virtually all mobile communication devices.

- DVSI’s full duplex AMBE+2™ Voice coder
- Superior voice quality, low data rate speech coding
- Supports variable data rates of 2.0 kbps to 9.6 kbps in 50 bps increments
- Minimal algorithmic processing delay
- Codec interfaces available (SPI or McBSP)
- Packet interfaces available (UART, McBSP, PPT)
- Configuration via hardware configuration pins and/or configuration packets
- Supports a-law and µ-law companding
- Robust to Bit Errors & Background Noise
- Variable FEC Rates - 50 bps to 7.2 kbps
- User Selectable Forward Error Correction rates
- Viterbi Decoder (rate 1/4 or more)
Product Introduction

- Voice Activity Detection (VAD) / Comfort Noise Insertion
- Echo Cancellation (*not supported in Packet Mode*)
- Noise Suppression
- DTMF detection and regeneration with North American call progress tones
- Very low power consumption with low power-mode
- Compact single chip solution: 128 pin LQFP or 179 pin PBGA
- No external memory required
- Low cost a value for mobile products

1.3 Typical Applications

The AMBE-3000™ vocoder chip’s level of performance can lead to the successful development and deployment of wireless communication systems in the most demanding environments. It has been thoroughly evaluated and tested by international manufacturers under various conditions using a variety of languages. This assures the user is getting the best vocoder available and makes the DVSI vocoder the logical choice without the need for additional comparison tests. Plus the fact, that DVSI’s voice compression technology has been implemented worldwide for more than 20 years, delivers the added security of a field proven technology that can play a key role in making any communication system an overall success.

- Satellite Communications
- Digital Mobile Radio
- Secure Communications
- Cellular Telephony and PCS
- Voice Multiplexing
2 Hardware Information

The AMBE-3000F™ Vocoder Chip uses Texas Instruments TMS320F2811 core. The TMS320F2811 DSP Design uses High-Performance Static CMOS Technology with a low-power Core (1.8-V @135 MHz), and 3.3-V I/O. This generation of TI DSPs, are highly integrated, high-performance solutions for demanding control applications. For more details on handling, electrical characteristics, packaging, or timing constraints please refer to the TMS320F2811 manual found at http://focus.ti.com/docs/prod/folders/print/tms320f2811.html

2.1 Special Handling and Moisture Sensitivity

To avoid damage from the accumulation of a static charge, industry standard electrostatic discharge precautions and procedures must be employed during handling and mounting.

The length of time the AMBE-3000F™ can be safely exposed to the ambient environment prior to high temperature reflow soldering follows the JEDEC industry standard classification for Moisture Sensitivity Level.

LQFP package
MSL Level-2-260C-1 Year

BGA Package
MSL Level-3-260C-168 hours

NOTE: DVSI recommends the AMBE-3000F™ in the BGA package be handled within proper MSL Level 3 guidelines to avoid damage from moisture absorption that could result in yield and reliability degradation. The Moisture Sensitivity Level requirements allow the AMBE-3000F™ to be safely exposed to the ambient environment of <30ºC/60% RH, for only **168 hours**. Since this is a relatively short period of time, all manufacturers should routinely follow industry standard MSL Level 3 bake-out procedures prior to assembly with these components.
2.2 Package Details

2.2.1 128-pin Low-Profile Quad Flat Pack (LQFP)

![Diagram of AMBE-3000F Vocoder Chip](image)

Figure 1 TQFP Mechanical Details

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
2.2.2 179 Pin Ball Grid Array (BGA)

Figure 2 BGA Mechanical Details

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. MicroStar BGA™ configuration.
D. This is a lead-free solder ball design.
2.3 Pin Assignment Layouts

2.3.1 LQFP Package

All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels. Inputs are not 5-V tolerant. A 100-µA (or 20-µA) pullup/pulldown is used. Note that pins 2 through 9 and 119 through 126 do not have internal pullup/pulldowns.
2.3.2 BGA Package Pins (Bottom View)

All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels. Inputs are not 5-V tolerant. A 100-µA (or 20-µA) pullup/pulldown is used. Note that pins C2, C3, B1, C1, D3, D2, D1, F5, B5, D5, E5, A4, B4, C4, D4, A3 do not have internal pullup/pulldowns.
2.4 AMBE-3000F™ Vocoder Chip Markings

2.4.1 AMBE-3000F™ Vocoder Chip LQFP Markings

![AMBE-3000F™ Vocoder Chip LQFP Markings](image)

Figure 5 AMBE-3000F™ Vocoder Chip LQFP Markings

© **DVSI** --- Copyright Digital Voice Systems, Incorporated

DVSI Part Number --- The DVSI device part number is AMBE-3000F™

Lot Trace Code --- The lot trace code indicates chip manufacturing information.

Example as shown above: **CG-58ACRCW 980**

- **CG** --- Chip manufacturer’s internal information
- **5** --- Year of manufacture
- **8** --- Month of manufacture - January thru September shall be represented by numbers 1 thru 9, and October thru December shall be represented by the letters A, B, and C
- **ACRC** --- Unique alpha-numeric Lot Code
- **W** --- Chip manufacturer’s assigned assembly site code
- **980** --- Chip manufacturer’s internal information

RoHS Compliance

G4 Indicates RoHS Compliance.
2.4.2 AMBE-3000F™ Vocoder Chip BGA Markings

![Figure 6 AMBE-3000F™ Vocoder Chip Markings for BGA](image)

- **© DVSI** --- Copyright Digital Voice Systems, Incorporated

- **DVSI Part Number** --- The DVSI device part number is AMBE-3000F™

- **Lot Trace Code** --- The lot trace code indicates chip manufacturing information.
 - Example as shown above CG-58ACRCW
 - **CG** --- Chip manufacturer's internal information
 - **5** --- Year of manufacture
 - **8** --- Month of manufacture - January thru September shall be represented by numbers 1 thru 9, and October thru December shall be represented by the letters A, B, and C
 - **ACRC** --- Unique alpha-numeric Lot Code
 - **W** --- Chip manufacturer's assigned assembly site code

- **RoHS Compliant**
 - G1 Indicates RoHS Compliance.
2.5 Pin Out Table

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>Pin Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP</td>
<td>BGA</td>
<td>Type</td>
<td>Notes</td>
</tr>
<tr>
<td>IF_SELECT0</td>
<td>2</td>
<td>C2</td>
<td>Input Interface selection configuration</td>
</tr>
<tr>
<td>IF_SELECT1</td>
<td>3</td>
<td>C3</td>
<td>Input Interface selection configuration</td>
</tr>
<tr>
<td>IF_SELECT2</td>
<td>4</td>
<td>B1</td>
<td>Input Interface selection configuration</td>
</tr>
<tr>
<td>DTX_ENABLE</td>
<td>5</td>
<td>C1</td>
<td>Input Enables VAD and CNI</td>
</tr>
<tr>
<td>SK_ENABLE</td>
<td>6</td>
<td>D3</td>
<td>Input Skew Control enable / disable</td>
</tr>
<tr>
<td>NS_ENABLE</td>
<td>7</td>
<td>D2</td>
<td>Input Noise Suppression enable / disable</td>
</tr>
<tr>
<td>CP_ENABLE</td>
<td>8</td>
<td>D1</td>
<td>Input Compriming enable / disable</td>
</tr>
<tr>
<td>CP_SELECT</td>
<td>9</td>
<td>F5</td>
<td>Input Select a-law / µ-law</td>
</tr>
<tr>
<td>VREF_1V</td>
<td>10</td>
<td>E4</td>
<td>- Voltage Reference Output (1 V). Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor of 10 μF to analog ground.</td>
</tr>
<tr>
<td>VREF_2V</td>
<td>11</td>
<td>E2</td>
<td>- Voltage Reference Output (2 V). Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor of 10 μF to analog ground.</td>
</tr>
<tr>
<td>ADCRESEXT</td>
<td>16</td>
<td>F2</td>
<td>- ADC External Current Bias Resistor (24.9kΩ) to Ground</td>
</tr>
<tr>
<td>McBSP_RxD</td>
<td>18</td>
<td>G2</td>
<td>Input McBSP Serial Packet/Codec Receive Data</td>
</tr>
<tr>
<td>McBSP_TxD</td>
<td>19</td>
<td>G1</td>
<td>Output McBSP Serial Packet/Codec Transmit Data</td>
</tr>
<tr>
<td>McBSP_CLKR</td>
<td>21</td>
<td>H2</td>
<td>Input McBSP Serial Packet/Codec receive clock</td>
</tr>
<tr>
<td>McBSP_FSX</td>
<td>22</td>
<td>H4</td>
<td>I/O McBSP Serial Packet/Codec transmit frame</td>
</tr>
<tr>
<td>McBSP_CLKX</td>
<td>23</td>
<td>J1</td>
<td>I/O McBSP Serial Packet/Codec transmit clock. This signal is an Input if the McBSP is used for the Codec Interface. This signal is an Output if the McBSP is used for the Packet Interface.</td>
</tr>
<tr>
<td>McBSP_FSR</td>
<td>24</td>
<td>J2</td>
<td>Input McBSP Serial packet/Codec receive frame</td>
</tr>
<tr>
<td>SPI_CLK</td>
<td>27</td>
<td>K2</td>
<td>Input This is the Serial clock from Codec. It also should be connected to SPI_CLK_IN</td>
</tr>
<tr>
<td>SPI_STE</td>
<td>28</td>
<td>K4</td>
<td>Input This is the framing signal generated from SPI_GENSTE. This pin need to be connected to Pin #77 on the AMBE-3000F™ Vocoder Chip.</td>
</tr>
<tr>
<td>SPI_RX_DATA</td>
<td>31</td>
<td>M1</td>
<td>Input PCM Data from A/D Converter to AMBE-3000F™ Vocoder Chip</td>
</tr>
<tr>
<td>SPI_TX_DATA</td>
<td>32</td>
<td>N1</td>
<td>Output PCM Data from AMBE-3000F™ Vocoder Chip to D/A Converter</td>
</tr>
<tr>
<td>PPT_DATA0</td>
<td>33</td>
<td>N2</td>
<td>I/O Parallel Packet Data</td>
</tr>
<tr>
<td>PPT_DATA1</td>
<td>34</td>
<td>P2</td>
<td>I/O Parallel Packet Data</td>
</tr>
<tr>
<td>PPT_DATA2</td>
<td>35</td>
<td>N3</td>
<td>I/O Parallel Packet Data</td>
</tr>
</tbody>
</table>
When the UART interface is used and low-power mode is enabled, this pin must be connected to UART_RX. When the McBSP packet interface is used this signal should be connected to the inverted McBSP_FSR signal.

For debugging purposes only. This signal is low while the AMBE-3000™ Vocoder Chip is in standby mode. Standby mode is entered only when low power mode is enabled and there is no activity.

For debugging purposes only. This signal is low while the AMBE-3000™ Vocoder Chip is in Idle mode. Idle mode is entered when there is no activity and low power mode is disabled.

Read data from PACKET_DATA pins

Write data to PACKET_DATA pins

Used to Acknowledges the transitions of PPT_READ and PPT_WRITE

3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times after power-up sequence requirements have been met.

Output from internal oscillator for use with a crystal. If the internal oscillator is not used this pin should be unconnected.

29.4912 MHz Clock input. The AMBE-3000 may be operated using the internal oscillator by connecting a crystal between X1 and X2 or with an external clock source. The AMBE-3000F™ Vocoder Chip can be operated with an external clock source, provided that the proper voltage levels are driven on the X1/XCLKIN pin. It should be noted that the X1/XCLKIN pin is referenced to the 1.8-V core digital power supply (VDD), rather than the 3.3-V I/O supply (VDDIO). A clamping diode may be used to clamp a buffered clock signal to ensure that the logic-high level does not exceed VDD (1.8 V) or a 1.8-V oscillator may be used.

Output to Reset the Codec. This signal is active low.

For debugging purposes only. This signal is low while the either encoder or decoder is executing otherwise it is high.
<table>
<thead>
<tr>
<th>Pin Code</th>
<th>Pin Number</th>
<th>Pin Info</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTSn</td>
<td>64</td>
<td>N12</td>
<td>Output</td>
</tr>
<tr>
<td>TX_RQST</td>
<td>68</td>
<td>M12</td>
<td>Input</td>
</tr>
<tr>
<td>TX_RDY</td>
<td>69</td>
<td>M14</td>
<td>Output</td>
</tr>
<tr>
<td>I2C_DATA</td>
<td>70</td>
<td>L12</td>
<td>Output</td>
</tr>
<tr>
<td>I2C_CLK</td>
<td>71</td>
<td>L13</td>
<td>Output</td>
</tr>
<tr>
<td>STDBY_ENABLEn</td>
<td>75</td>
<td>K14</td>
<td>Input</td>
</tr>
<tr>
<td>SPI_GENSTE</td>
<td>77</td>
<td>J13</td>
<td>Output</td>
</tr>
<tr>
<td>PARITY_ENABLE</td>
<td>79</td>
<td>H11</td>
<td>Input</td>
</tr>
<tr>
<td>SPI_FSn</td>
<td>80</td>
<td>H12</td>
<td>Input</td>
</tr>
<tr>
<td>SPI_CLK_IN</td>
<td>86</td>
<td>F13</td>
<td>Input</td>
</tr>
<tr>
<td>Pin Name</td>
<td>Pin</td>
<td>Function and Notes</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>S_COM_RATE0</td>
<td>89</td>
<td>E13 Input LSB of Serial Communications Rate selection</td>
<td></td>
</tr>
<tr>
<td>S_COM_RATE1</td>
<td>90</td>
<td>E11 Input Serial Communications Rate selection</td>
<td></td>
</tr>
<tr>
<td>S_COM_RATE2</td>
<td>91</td>
<td>F10 Input MSB of Serial Communications Rate selection</td>
<td></td>
</tr>
<tr>
<td>SPI_WAKE</td>
<td>106</td>
<td>D9 Input Must be connected to the active low frame sync signal from the codec if the SPI interface is used and low power mode is enabled. The signal is used to wake the AMBE-3000F™ Vocoder Chip from stand-by mode.</td>
<td></td>
</tr>
<tr>
<td>UART_TX</td>
<td>111</td>
<td>C7 Output Channel Transmit Data from AMBE-3000F™ Vocoder Chip SCI asynchronous serial port. This pin must be held HIGH during a Hard Reset.</td>
<td></td>
</tr>
<tr>
<td>UART_RX</td>
<td>112</td>
<td>A7 Input Channel Receive Data to AMBE-3000F™ Vocoder Chip asynchronous serial port.</td>
<td></td>
</tr>
<tr>
<td>RESETn</td>
<td>113</td>
<td>D6 I/O AMBE-3000F™ Vocoder Chip Reset pin. Active LOW. The RESET pin is considered an I/O port and will function as such when a SOFT RESET packet (PKT_RESET or PKT_RESETSOFTCFG) is sent to the device. For more details see Section 3.6 Reset Behavior</td>
<td></td>
</tr>
<tr>
<td>ES_ENABLE</td>
<td>119</td>
<td>B5 Input Echo Suppressor enable / disable (not supported in Packet Mode)</td>
<td></td>
</tr>
<tr>
<td>EC_ENABLE</td>
<td>120</td>
<td>D5 Input Echo Canceller enable / disable (not supported in Packet Mode)</td>
<td></td>
</tr>
<tr>
<td>RATE5</td>
<td>121</td>
<td>E5 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>RATE4</td>
<td>122</td>
<td>A4 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>RATE3</td>
<td>123</td>
<td>B4 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>RATE2</td>
<td>124</td>
<td>C4 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>RATE1</td>
<td>125</td>
<td>D4 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>RATE0</td>
<td>126</td>
<td>A3 Input Vocoder Bit Rate Control Word</td>
<td></td>
</tr>
<tr>
<td>1v8</td>
<td></td>
<td>B10, C8, C14, G12, H1, K12, L1, P5, P9, P12, A6 PWR Supply Voltage 1.8-V Core Digital Power Pins. (V_DD)</td>
<td></td>
</tr>
</tbody>
</table>

(Subject to Change)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>12, 15, 17, 26, 30, 39, 53, 59, 62, 73, 88, 95, 97, 103, 109, 115, 117, 127, 128</td>
<td>E3, F3, B8, B14, C10, D10, E14, G4, G13, J14, K1, K6, A13, K13, L1, L2, C6, C5, B3, A2, L11, M10, P4, P8,</td>
<td>GND</td>
<td>Core and Digital I/O Pins to Ground. (VSS)</td>
</tr>
<tr>
<td>I/O Pin</td>
<td>54, 55, 65, 66, 67, 72, 76, 78, 81, 84, 85, 101, 107, 108</td>
<td>L8, K8, N13, P14, M13, K11, J11, H10, H14, G10, F14, A11, E8, E8, D8</td>
<td>I/O</td>
<td>No Connection</td>
</tr>
<tr>
<td>N/C</td>
<td>50, 51, 87, 92, 93, 96, 98, 99, 100, 105, 116</td>
<td>N7, M7, F11, D13, D12, C13, B12, A12, D11, C9, E6</td>
<td>-</td>
<td>No Connection</td>
</tr>
</tbody>
</table>
Table 1 Pinout List

<table>
<thead>
<tr>
<th>N/C</th>
<th>-</th>
<th>No Connection</th>
</tr>
</thead>
</table>

NOTE:
Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached recommended operating conditions. However, it is acceptable for an I/O pin to ramp along with the 3.3-V supply.

The following pins have internal pullup
18/G2, 21/H2, 22/H4, 23/J1, 24/J2, 33/N2, 34/P2, 35/N3, 36/P3, 37/L4, 38/M4, 40/K5, 41/N5, 43/M5, 44/M6, 45/P6, 46/N6, 47/L6, 48/K7, 54/L8, 55/K8, 60/P10, 61/P11, 64/N12, 65/N13, 68/M12, 69/M14, 70/L12, 71/L13, 72/K11, 75/K14, 76/J11,
The following pins have internal Pulldown
98/B12
2.6 Hardware Configuration Pins

There is a set of configuration pins that allows the user to set-up the most common chip configurations. The chip boots up according to the configuration pins. Then after booting up, if any configuration packets are received, the configuration is changed accordingly. The configuration pins are only checked at boot time.

Hardware Configuration Pins

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP</td>
<td>BGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td>C2 C3</td>
<td>IF_SELECT0, IF_SELECT1</td>
</tr>
<tr>
<td>4 3</td>
<td>B1 C3</td>
<td>IF_SELECT2</td>
</tr>
<tr>
<td>5 5</td>
<td>C1 B1</td>
<td>DTX_ENABLE</td>
</tr>
<tr>
<td>6 7</td>
<td>D3 D2</td>
<td>SK_ENABLE, NS_ENABLE</td>
</tr>
<tr>
<td>8 8</td>
<td>D1 D3</td>
<td>CP_ENABLE</td>
</tr>
<tr>
<td>9 9</td>
<td>F5 D1</td>
<td>CP_SELECT</td>
</tr>
<tr>
<td>79</td>
<td>H11</td>
<td>PARITY_ENABLE</td>
</tr>
<tr>
<td>89</td>
<td>E13</td>
<td>S_COM_RATE0</td>
</tr>
<tr>
<td>90</td>
<td>E11</td>
<td>S_COM_RATE1</td>
</tr>
<tr>
<td>91</td>
<td>F10</td>
<td>S_COM_RATE2</td>
</tr>
<tr>
<td>119</td>
<td>B5</td>
<td>ES_ENABLE</td>
</tr>
<tr>
<td>120</td>
<td>D5</td>
<td>EC_ENABLE</td>
</tr>
<tr>
<td>121</td>
<td>E5</td>
<td>RATE5</td>
</tr>
<tr>
<td>122</td>
<td>A4</td>
<td>RATE4</td>
</tr>
<tr>
<td>123</td>
<td>B4</td>
<td>RATE3</td>
</tr>
<tr>
<td>124</td>
<td>C4</td>
<td>RATE2</td>
</tr>
<tr>
<td>125</td>
<td>D4</td>
<td>RATE1</td>
</tr>
<tr>
<td>126</td>
<td>A3</td>
<td>RATE0</td>
</tr>
</tbody>
</table>

Table 2 Hardware Configuration Settings
2.7 Crystal / Oscillator Usage

The AMBE-3000F™ Vocoder Chip has an on-chip, PLL-based clock module and requires an input clock frequency of 29.4912 MHz. The PLL-based clock module provides all the necessary clocking signals for the device, as well as control for low-power mode entry. The AMBE-3000F™ Vocoder Chip has two modes of operation:

External clock source operation (See Figure 7 X1/XCLKIN and X2 with TTL/CMOS Clock Source)
○ This mode allows the internal oscillator to be bypassed. The device clocks are generated from an external clock source input on the X1/XCLKIN pin.

Crystal-operation (See Figure 8 X1/XCLKIN and X2 with Crystal Oscillator)
○ This mode allows the use of an external crystal/resonator to provide the time base to the device.

The following points should be noted when designing any printed circuit board layout:
○ Keep X1/XCLKIN and X2 away from high frequency digital traces to avoid coupling.
○ Keep the crystal and external capacitors as close to the X1/XCLKIN and X2 pins as possible to minimize board stray capacitance.

2.7.1 External Clock Source

When an external source is used as the clock input. Connect X1/XCLKIN and X2 as follows:

![Figure 7 X1/XCLKIN and X2 with TTL/CMOS Clock Source](image)

2.7.2 Crystal Oscillator

To use a crystal oscillator with the AMBE-3000F™ Vocoder Chip, connect the crystal across X1/XCLKIN and X2 along with one external capacitor from each of these pins to ground.
NOTE A: It is recommended that the resonator/crystal vendor characterize the operation of their device with the chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise regarding the proper tank component values that will ensure start up and stability over the entire operating range.

The typical specifications for the external quartz crystal for a frequency of 30 MHz are listed below:
- Fundamental mode, parallel resonant
- CL (load capacitance) = 12 pF
- \(C_{L1} = C_{L2} = 24 \text{ pF} \)
- \(C_{\text{shunt}} = 6 \text{ pF} \)
- ESR range = 25 to 40 Ohms
- +/- 30 ppm

2.7.3 Input Clock Requirements

The clock provided at XCL Kin pin generates the internal CPU clock cycle.

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(t_{(Cl)}), Cycle time, XCL Kin</td>
<td>6.67</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>B</td>
<td>(t_{(Cl)}), Rise time, XCL Kin</td>
<td>6</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>C</td>
<td>(t_{(Cl)}), Fall time, XCL Kin</td>
<td>6</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{(Cl)}), Pulse duration XCL Kin Low</td>
<td>40</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(t_{(Cl)}), Pulse duration XCL Kin High</td>
<td>40</td>
<td>60</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{HI}), High-level input voltage X1/XCL Kin (@50\mu A max)</td>
<td>.7 (1v8)</td>
<td>-</td>
<td>1v8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}), Low-level input voltage X1/XCL Kin (@50\mu A max)</td>
<td>0.3 (1v8)</td>
<td>-</td>
<td>1v8</td>
<td>V</td>
</tr>
</tbody>
</table>

Figure 8 X1/XCL Kin and X2 with Crystal Oscillator

Figure 9 Input Clock Requirements
3 Electrical Characteristics and Requirements

Unless otherwise noted, the list of absolute maximum ratings is specified over operating temperature ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS.

3.1 Normal Operating Conditions

<table>
<thead>
<tr>
<th>Normal Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
</tr>
<tr>
<td>Operating Ambient Temperature Range</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
</tr>
<tr>
<td>Junction Temperature Range</td>
</tr>
</tbody>
</table>

Table 3 Normal Operating Conditions

Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see IC Package Thermal Metrics Application Report (TI literature number SPRA953) and Reliability Data for additional information; see IC Package Thermal Metrics Application Report and Reliability Data (TI literature number SPRA953).

3.2 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3v3</td>
<td>3.14</td>
<td>3.3</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>1v8</td>
<td>1.71</td>
<td>1.8</td>
<td>1.89</td>
<td>V</td>
</tr>
<tr>
<td>V_HH</td>
<td>2.0</td>
<td>-</td>
<td>3v3</td>
<td>V</td>
</tr>
<tr>
<td>V_HL</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_HH</td>
<td>.7(1v8)</td>
<td>-</td>
<td>1v8</td>
<td>V</td>
</tr>
<tr>
<td>V_HL</td>
<td>0.3(1v8)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>fSYSCLKOUT</td>
<td>29.4912</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>IOH</td>
<td>-4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IOH</td>
<td>-8</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IO_L</td>
<td>4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IO_L</td>
<td>8</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4 Recommended Operating Conditions

†† Note Applies to the following pin: SPI_WAKE (TQFP Pin 106, BGA Pin D9).

3.3 Absolute Maximum Ratings

Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to Absolute Maximum Ratings for extended periods can adversely affect device reliability.
Electrical Characteristics and Requirements

Table 5 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TQFP</th>
<th>BGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3v3 Supply voltage range</td>
<td>-0.3 V to 4.6 V</td>
<td></td>
</tr>
<tr>
<td>1v8 Supply voltage range</td>
<td>-0.5 V to 2.5 V</td>
<td></td>
</tr>
<tr>
<td>Input voltage range, V_{IN}</td>
<td>-0.3 V to 4.6 V</td>
<td></td>
</tr>
<tr>
<td>Output voltage range, V_{O}</td>
<td>-0.3 V to 4.6 V</td>
<td></td>
</tr>
<tr>
<td>Input clamp current I_{IK} ($V_{IN} < 0$ or $V_{IN} > 3v3$)†</td>
<td>± 20 mA</td>
<td></td>
</tr>
<tr>
<td>Output clamp current I_{OK} ($V_{O} < 0$ or $V_{O} > 3v3$)</td>
<td>± 20 mA</td>
<td></td>
</tr>
</tbody>
</table>

†Continuous clamp current per pin is ± 2 mA

3.4 Thermal Resistance Characteristics

Table 6 Thermal Resistance Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Package Type</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ_{JT}</td>
<td>TQFP</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>BGA</td>
<td>0.658</td>
</tr>
<tr>
<td>Θ_{JA}</td>
<td>TQFP</td>
<td>41.65</td>
</tr>
<tr>
<td></td>
<td>BGA</td>
<td>42.57</td>
</tr>
<tr>
<td>Θ_{JC}</td>
<td>TQFP</td>
<td>10.76</td>
</tr>
<tr>
<td></td>
<td>BGA</td>
<td>16.08</td>
</tr>
</tbody>
</table>

Unless otherwise noted, the list of absolute maximum ratings is specified over operating temperature ranges. All voltage values are with respect to V_{ss}.

3.5 Power Sequencing Requirements

The AMBE-3000FTM Vocoder Chip silicon requires dual voltages (1.8-V and 3.3-V) to power up the CPU, Flash, ROM, ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some requirements to be met while powering up/powering down the device.

Enable power to all 3.3-V supply pins and then ramp 1.8 V supply pins (Table 7 Voltage Supply Pins). Other than the power supply pins, no pin should be driven before the 3.3-V rail has been fully powered up.

Table 7 Voltage Supply Pins

<table>
<thead>
<tr>
<th>Voltage Supply Pins</th>
<th>Package Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 V Supply Pins</td>
<td>TQFP</td>
</tr>
<tr>
<td></td>
<td>BGA</td>
</tr>
<tr>
<td>1, 13, 14, 25, 49, 83, 104, 118</td>
<td>B2, E1, F4, E9, G11, J4, L7, A5, L10, N14</td>
</tr>
<tr>
<td>1.8 V Supply Pins</td>
<td>TQFP</td>
</tr>
<tr>
<td></td>
<td>BGA</td>
</tr>
<tr>
<td>20, 29, 42, 56, 63, 74, 82, 94, 102, 110, 114</td>
<td>B10, C8, C14, G12, H1, K12, L1, P5, P9, P12, A6</td>
</tr>
</tbody>
</table>
1.8 V supply voltage should not reach 0.3 V until 3v3 has reached 2.5 V. This ensures the reset signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the modules inside the device.

3.6 Reset Behavior

To avoid startup latency problems the system should be designed to supply a cascading reset. This means that once the system host processor is fully functional it should bring the AMBE-3000™ Vocoder Chip out of reset using RESETn signal. The AMBE-3000™ Vocoder Chip should then supply the CODEC_RESETn signal to bring the codec out of reset. Employing reset in this cascading fashion will allow each device to be up and running in proper sequence so that no data is lost.

![Figure 10 Cascading Resets](#)

Care should be taken with the AMBE-3000™ Vocoder Chip RESET pin (LQFP pin 113, BGA pin D6). The RESET pin is considered an I/O port and will function as such when a SOFT RESET packet (PKT_RESET or PKT_RESETSOFTCFG) is sent to the device. This means that when a SOFT RESET packet is issued, the AMBE-3000™ Vocoder Chip will pull the RESET pin low for a short period of time (approximately 20 µsec). The designer should avoid having the AMBE-3000™ Vocoder Chip’s RESET pin be shared on the system reset line or a reset with other components on the board if there is a chance that a SOFT RESET may be called for in the design.

3.6.1 Reset to Ready Packet Timing

RESET release to PKT_READY is 20 msec MAX, 17 msec TYPICAL.

SOFT reset to PKT_READY = ~ 7 msec

3.6.2 Behavior of RTSn and TX_RDY following a RESET

Following a RESET, there is a short period where the TX_RDY signal is set high by the AMBE-3000. During this short period reading of the TX_RDY should be avoided. The TX_RDY hold off period is approximately 1 msec following a reset.
3.7 Signal Transition Levels

Note that some of the signals use different reference voltages, see Table 4 Recommended Operating Conditions. Output levels are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.4 V.

Output transition times are specified as follows:

- For a high-to-low transition, the level at which the output is said to be no longer high is below \(V_{OH(MIN)} \) and the level at which the output is said to be low is \(V_{OL(MAX)} \) and lower.

- For a low-to-high transition, the level at which the output is said to be no longer low is above \(V_{OL(MAX)} \) and the level at which the output is said to be high is \(V_{OH(MIN)} \) and higher.
Input levels are as follows 0.8 V \((V_{IL}) \) and 2.0 V \((V_{IH}) \)

Input transition times are specified as follows:

◊ For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is below \(V_{IH(Min)} \) and the level at which the input is said to be low is \(V_{IL(Max)} \) and lower.

◊ For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is above \(V_{IL(Max)} \) and the level at which the input is said to be high is \(V_{IH(Min)} \) and higher.

3.8 Power-Down Sequencing:

During power-down, the device reset should be asserted low (8 μs, minimum) before the 1.8 V supply reaches 1.5 V. This will help to keep on-chip flash logic in reset prior to the 3v3and 1.8 V power supplies ramping down. It is recommended that the device reset control from “Low-Dropout (LDO)” regulators or voltage supervisors be used to meet this constraint. LDO regulators that facilitate power-sequencing (with the aid of additional external components) may be used to meet the power sequencing requirement.

3.9 Low Power Modes

The AMBE-3000F™ Vocoder Chip has four power states as shown in Figure 14 AMBE-3000F™ Vocoder Chip Power States.
In order to reduce power consumption the AMBE-3000F™ Vocoder Chip automatically switches to lower power states when possible. The AMBE-3000F™ Vocoder Chip may switch power states many times during each 20 ms frame. For instance, during periods when the AMBE-3000F™ Vocoder Chip is not actively executing code, the AMBE-3000F™ Vocoder Chip will be in a low power state. When a codec interrupt occurs the AMBE-3000F™ Vocoder Chip will briefly switch into the run state and then switch back to the lower power state. If the codec interface is in use, then the AMBE-3000F™ Vocoder Chip will never remain in the low power state for more than 125 us at a time.

Figure 15 Power Mode States Basic Timing

3.9.1 Run State
This is the highest power state. The AMBE-3000F™ Vocoder Chip is in this state whenever it is actively executing code. The AMBE-3000F™ Vocoder Chip is in the run state if the encoder is running or if the decoder is running or other processing is being performed.

3.9.2 Idle State
This state uses less power than the run state. The AMBE-3000F™ Vocoder Chip is in this state whenever it is not actively executing code, but peripherals are active. Peripherals are active when packets are being transmitted or received or when codec samples are being clocked in/out.

3.9.3 Standby State
This state uses even less power than the Idle State. However, no peripherals can be sending or receiving data while in this state. The AMBE-3000F™ Vocoder Chip will only enter this state if low power mode is enabled, AND the AMBE-3000F™ Vocoder Chip is not actively executing code, AND no peripherals are in use. Peripheral activity causes the AMBE-3000F™ Vocoder Chip to re-enter the run state. When low power mode is enabled, some extra hardware connections are required. The required connections are dependent upon which interfaces are in use.

3.9.4 Halt State
This is the lowest power state. The AMBE-3000F™ Vocoder Chip does not automatically enter in and out of this state. The only way to get into this state is to send a packet containing a PKT_HALT field. The only way to get out of this state is via a hard reset. During a hard reset be sure to hold UART_TX HIGH (LQFP pin 111, BGA pin C7)
3.9.5 Power Modes

The AMBE-3000F™ Vocoder Chip has two power modes:

1. Normal Power Mode: In this mode the AMBE-3000F™ Vocoder Chip switches between the Run State and the Idle State.
2. Low Power Mode: In this mode the AMBE-3000F™ Vocoder Chip switches between the Run State, the Idle State, and the Standby State. Lower power is consumed because the AMBE-3000F™ Vocoder Chip is in the Standby state a large percentage of the time. Low power mode is enabled or disabled by sending a packet containing PKT_LOWPOWER field to the AMBE-3000F™ Vocoder Chip. After reset, low power mode is always disabled.

Figure 16 Power Modes

The AMBE-3000F™ Vocoder Chip outputs three signals that are related to its current power state. The STANDBYn (TQFP pin 44 / BGA pin M6) signal goes low whenever the AMBE-3000F™ Vocoder Chip is in the Standby State, otherwise the signal is high. The IDLEn (TQFP pin 45 / BGA pin P6) signal is low whenever the AMBE-3000F™ Vocoder Chip is in the Idle State, otherwise the signal is high. The RUNn (TQFP pin 61 / BGA pin P11) signal is low whenever, either the encoder or the decoder is running, otherwise the signal is high.

3.9.6 Low Power mode when using the UART Packet Interface

When the UART packet interface is used and low-power mode is enabled, PKT_RX_WAKE (TQFP pin 43 / BGA pin M5) must be connected to UART_RX (TQFP pin 112 / BGA pin A7). The signal is used to make sure that the standby state is not entered while UART_RX is active.

3.9.7 Low Power Mode when using the McBSP Packet Interface

When the McBSP packet interface is used the PKT_RX_WAKE (TQFP pin 43 / BGA pin M5) signal must be connected to the inverted McBSP_FSR signal (TQFP pin 24 / BGA pin J2). The signal is needed in order to wake the chip from the standby state.

3.9.8 Low Power Mode when using the McBSP Codec Interface

When the McBSP codec interface is used the SPI_WAKE (TQFP pin 106 / BGA pin D9) signal must be connected to the inverted McBSP_FSR signal (TQFP pin 24 / BGA pin J2). The signal is needed in order to wake the chip from the standby state.

Note: The higher the frequency of the MCBSP clock the better power consumption will be when low-power mode is enabled.
3.9.9 Low Power Mode when using the SPI Codec Interface

When the SPI codec interface is used the SPI_WAKE (TQFP pin 106 / BGA pin D9) signal must be connected to the inverted frame sync signal from the codec. The signal is needed in order to wake the chip from the standby state.

3.9.10 Low Power Mode when using the Parallel Packet Interface

No additional connections are required to use low power mode with the parallel interface.

3.9.11 Additional Requirements when Low Power Mode is enabled.

If low power mode is enabled, there are some restrictions on when a packet can be sent to the AMBE-3000F™ Vocoder Chip. One of the following methods must be chosen.

Method 1: Prior to the start of any packet transfer to the AMBE-3000F™ Vocoder Chip, the STDBY_ENABLEn (TQFP pin 75 / BGA pin K14) pin must be set low at least 500ns prior to sending the first byte of a packet via UART, McBSP, or Parallel Port. The signal should be set high anytime after the first byte of the packet has been transferred to the AMBE-3000F™ Vocoder Chip. When the STDBY_ENABLEn is held low, the AMBE-3000F™ Vocoder Chip is prevented from entering the standby state, so it is important that the STDBY_ENABLEn signal is set high prior to the end of the last byte of the packet.

OR

Method 2: STDBY_ENABLEn (TQFP pin 75 / BGA pin K14) must be pulled high or left disconnected. Prior to the start of any packet transfer to the AMBE-3000F™ Vocoder Chip, wait for a transition of the STANDBYn (TQFP pin 44 / BGA pin M6) signal from the high state to the low state. After the transition is detected begin sending the first byte of the packet to the AMBE-3000F™ Vocoder Chip via UART, McBSP, or Parallel Port within 100µs after the transition was detected.

OR

Method 3: A packet may be sent to the AMBE-3000F™ Vocoder Chip at anytime after the AMBE-3000F™ Vocoder Chip has begun transmitting a packet up until the time the AMBE-3000F™ Vocoder Chip has just finished transmitting the packet. It is important that the first byte of the packet being sent to the AMBE-3000F™ Vocoder Chip be sent before the last byte of the packet is received from the AMBE-3000F™ Vocoder Chip.

3.9.12 Typical AMBE-3000F™ Vocoder Chip Power Measurements:

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Power Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Power Mode NOT Enabled</td>
<td>Low Power Mode Enabled</td>
</tr>
<tr>
<td>Codec Mode (SPI Interface)</td>
<td>1.8v uses 154 mW</td>
</tr>
<tr>
<td>UART Packet Interface 50% Voice Activity</td>
<td>3.3v uses 26 mW</td>
</tr>
<tr>
<td></td>
<td>Total 180 mW</td>
</tr>
<tr>
<td>Packet Mode</td>
<td>125 mW</td>
</tr>
<tr>
<td>UART Packet Interface Not receiving packets</td>
<td>(AMBE-3000F™ Vocoder Chip is in the idle state)</td>
</tr>
<tr>
<td>Maximum Current Values</td>
<td>1.8v = 193 mW</td>
</tr>
</tbody>
</table>

Table 8 Typical AMBE-3000F™ Vocoder Chip Power Measurements
4 Initial Design Considerations

Some of the initial design considerations the application engineer will face are the following:

- Speech and FEC rates. (2000 – 9600 bps)
- Mode of operation (codec mode or packet mode)
- Choice of codec interface. (SPI, McBSP) - for codec mode only!
- Choice of packet interface. (UART, McBSP, PPT)
- Choice of A/D-D/A chip. - for codec mode only!

Implementing the AMBE-3000F™ Vocoder Chip into a communication system requires the selection of various components. The AMBE-3000F™ Vocoder Chip offers multiple interfaces for flexibility in integration into a variety of design configurations.

In its simplest model, the AMBE-3000F™ Vocoder Chip can be viewed as two separate components, the Encoder and the Decoder. The Encoder receives an 8 kHz sampled stream of speech data (16-bit linear, 8-bit A-law, or 8-bit μ-law) and outputs a stream of channel data at the desired rate. Simultaneously, the AMBE-3000F™ Vocoder Chip receives compressed voice channel data. This data is decoded by the AMBE-3000F™ Vocoder Chip, then reconstructed into a digital speech signal and sent to the D/A. The encoder and decoder functions are fully asynchronous.

The special functions of the AMBE-3000F™ Vocoder Chip, such as echo cancellation, voice activity /detection, power mode control, data/FEC rate selection, etc. can be controlled either through hardware control pins and/or through the packet interface.

![Figure 17 Basic Operation](image)

4.1 Vocoder Speech and FEC Rate Selection

The voice coding rate as well as the FEC coding rate can be selected individually on the AMBE-3000F™ Vocoder Chip. These rates are selected by using a configuration control packet, or through hardware configuration pins. The hardware configuration pins provide the user with 62 pre-configured voice/FEC rates. If rates other than these are desired, then a configuration control packet can be used to configure voice and FEC rates in 50 bps increments.

4.2 Interface Selection

Basic communication to/from the AMBE-3000F™ Vocoder Chip consists of input digitized speech data samples, output digitized speech data samples, input compressed speech data and output compressed speech data. There are four physical interfaces (SPI, McBSP, UART and Parallel) used to transfer the data to/from the AMBE-3000F™ Vocoder Chip.
For codec mode, the user must select two physical interfaces: one for the codec data and one for the packet data. The choices for the codec interface are SPI or McBSP. The choices for the packet interface are McBSP or UART or Parallel Port. The McBSP cannot be used for both the codec interface and the packet interface.

For packet mode, the user must select one physical interface to be used for packet data. The packet interface is used to transfer both the speech data samples and the compressed channel data. The choices for the packet interface are McBSP or UART or Parallel Port.

The AMBE-3000F™ Vocoder Chip supports four separate physical interfaces: SPI, UART, Parallel port, and McBSP serial port. The user must select a codec interface and a packet interface using hardware configuration pins IF_SELECT0 (TQFP pin2, BGA pin C2), IF_SELECT1 (TQFP pin3, BGA pin C3), and IF_SELECT2 (TQFP pin4, BGA pin B1). The available interface combinations are shown in Table 9 Physical Interface Selection.

<table>
<thead>
<tr>
<th>Mode</th>
<th>IF_SELECT Configuration Pin #’s (TQFP / BGA)</th>
<th>Codec Interface</th>
<th>Packet Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec Mode</td>
<td>4 / B1 3 / C3 2 / C2</td>
<td>SPI</td>
<td>UART</td>
</tr>
<tr>
<td>Codec Mode</td>
<td>0 0 1</td>
<td>SPI</td>
<td>PPT</td>
</tr>
<tr>
<td>Codec Mode</td>
<td>0 1 0</td>
<td>SPI</td>
<td>McBSP*</td>
</tr>
<tr>
<td>Codec Mode</td>
<td>0 1 1</td>
<td>McBSP*</td>
<td>UART</td>
</tr>
<tr>
<td>Codec Mode</td>
<td>1 0 0</td>
<td>McBSP*</td>
<td>PPT</td>
</tr>
<tr>
<td>Packet Mode</td>
<td>1 0 1</td>
<td>Not used</td>
<td>UART</td>
</tr>
<tr>
<td>Packet Mode</td>
<td>1 1 0</td>
<td>Not used</td>
<td>PPT</td>
</tr>
<tr>
<td>Packet Mode</td>
<td>1 1 1</td>
<td>Not used</td>
<td>McBSP*</td>
</tr>
</tbody>
</table>

*Note: McBSP Interface may be used for codec interface or the packet interface but not both.

4.3 A/D – D/A Codec chip Selection

The AMBE-3000F™ Vocoder Chip can be configured to transmit and receive digitized speech to and from most linear, a-law, or u-law A/D-D/A codecs. The format of the incoming and outgoing speech data streams are coupled, that is to say they must be the same format (16-bit linear, 8-bit a-law, or 8-bit μ-law). The digitized speech from the external A/D is converted into compressed digital data (encoded) by the AMBE-3000F™ Vocoder Chip and the channel data is output to the packet interface. Alternatively, speech data can be sent to/from the AMBE-3000F™ Vocoder Chip via a packet interface.

The choice of the A/D-D/A chip is critical to designing a system with superior voice quality. Given that a-law and μ-law companding chips are already incorporating some compression to reduce the number of bits per sample, it is recommended that, when possible, a 16-bit linear device be used for maximum voice quality. When choosing a device, pay particular attention to signal to noise ratios and frequency responses of any filters that may be present on the analog front end of these chips. Generally speaking, the flatter the frequency response over the voice spectrum (20-4000Hz) the better the overall system will sound. The a-law and μ-law interfaces are mainly provided for the design engineer who is trying to fit to pre-existing conditions or is under cost savings restraints.

4.4 Vocoder State

In systems that require the ability to encode/decode different subsequent audio streams the vocoder state in the AMBE-3000F™ Vocoder Chip would need to be reset back to the initial state. This will ensure that new audio streams will not be using state data from a previous unrelated audio stream. To clear out any old vocoder state information the designer should send a PKT_INIT to the AMBE-3000F™ Vocoder Chip in between each different audio stream. This will reset the chip back to the default state and allow it to encode/decode properly.
4.5 Special Functions Description

The special functions of the AMBE-3000F™ Vocoder Chip, such as voice activity detection, echo cancellation, DTMF, data/FEC rate selection, power mode control, etc. can be controlled either through hardware control pins and/or through the packet interface. The hardware inputs are only accessed for input during the first 7 milliseconds after a hardware reset on RESETn. For predictable operation these signals must remain stable over this time period. After this 7 milliseconds initialization period changes on these pins are ignored, unless another reset is performed.

4.5.1 Voice Activity Detection & Comfort Noise Insertion

(DTX_ENABLE TQFP pin5, BGA pin C1)

The Voice Activity Detection (VAD) algorithm along with the Comfort Noise Insertion (CNI) feature of the AMBE-3000F™ Vocoder Chip performs useful functions in systems trying to convert periods of silence, that exist in normal conversation, to savings in system bandwidth or power. VAD and CNI can be enabled by either hardware configuration pin (DTX_ENABLE TQFP pin5 BGA pin C1) or as part of a control packet.

With the VAD functions enabled, when periods of silence occur, the encoder will output a silence frame (in-band). This silence frame contains information regarding the level of background noise, which allows the corresponding decoder to synthesize a “Comfort Noise” signal at the other end. The comfort noise is intended to give the listener the feeling that the call is still connected, as opposed to producing absolute silence, which can give the impression that the call has been “dropped”. The decoder will produce a comfort noise frame if it receives an in-band silence frame (produced only by an encoder with VAD enabled). The synthesis of a Comfort Noise frame by the decoder is not dependent on VAD being enabled.

If the VAD features are being used to reduce transmit power during times of conversational silence, DVSI recommends that a silence frame be transmitted at least every 500-1000 milliseconds. This is to ensure that the parameters regarding the levels of background noise are transmitted to the decoder for the smoothest audible transitions between synthesized speech and synthesized silence.

The silence threshold value is -25 dBm0 in the VAD algorithm. Each frame that exceeds this level will be classified as voice. If the frame level is less than -25 dBm0 the voice/silence decision will be determined based upon various adaptive thresholds.

4.5.2 Echo Canceller (EC_ENABLE TQFP pin120 BGA pin D5)

(not supported in Packet Mode)

The AMBE-3000F™ Vocoder Chip’s voice coder contains an echo canceller that can be selectively enabled or disabled via either hardware pin or setting of control command packet. The echo canceller is suitable for canceling the local echo caused by a 2-to-4 wire hybrid and can achieve echo cancellation of approximately 30dB or more. Only the linear portion of the echo can be cancelled, so circuits should be designed to minimize nonlinearities. The Echo Return Loss (ERL) of the analog circuit must be 6dB or more for proper echo canceller operation. Linear Codecs will generally provide better performance than μ-law or a-law codecs due to lower quantization noise.

The AMBE-3000F™ Vocoder Chip employs an adaptive echo cancellation algorithm to cancel echoes of the decoder output present at the encoder input. The echo canceller is an Adaptive LMS echo canceller with a 16 ms (128 samples) filter. It exceeds all the performance requirements specified by ITU-T recommendation G.165.
4.5.3 DTMF Dual Tone Multiple Frequency, Detection and Generation

The AMBE-3000F™ Vocoder Chip is capable of detecting, transmitting, and synthesizing DTMF tones. When the encoder detects DTMF tones the voice data field will contain the DTMF tone data. Additionally, the encoder passes the DTMF data in-band (within the regular voice data bits) so that normal DTMF tones pass seamlessly from the encoder to the decoder for synthesis. The decoder synthesizes a DTMF tone in response to reception of an in-band DTMF tone frame or reception of a control packet with the DTMF word set. When this voice data is received by an AMBE-3000F™ Vocoder Chip decoder, it will regenerate the inband tone. The AMBE-3000F™ Vocoder Chip can also generate “Dual Tones” at many different frequencies. Each tone packet generates 20 milliseconds of output tones. The length of the output tones can be extended by repeating the tone packet. DTMF may be enabled or disabled through a control packet. DTMF is enabled by default.

The AMBE-3000F™ Vocoder Chip can also generate Single Frequency Tones. This can be done by using the TONE_IDX Field (see Error! Reference source not found.). Each packet with TONE_IDX generates 20 milliseconds of output tones. The length of the output tones can be extended by repeating the packet. Tones that can be generated by the AMBE-3000F™ Vocoder Chip are shown in Table 104 TONE Index Values.

4.5.4 Soft Decision Error Correction

Significant improvement in FEC performance can be added by setting up a receiver so that the demodulator is making a finer estimation of the received energy prior to sending it to the decoder, this is called soft-decision decoding. To use Soft Decision Error Correction use the CHAND4 (ID 0x17) field in the channel packet. The AMBE-3000F™ Vocoder Chip utilizes a 4-bit soft decision decoder. The bits are defined as follows:

<table>
<thead>
<tr>
<th>Decision Value (Binary)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Most confident 0</td>
</tr>
<tr>
<td>0111</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>...</td>
</tr>
<tr>
<td>1111</td>
<td>Most confident 1</td>
</tr>
</tbody>
</table>

Table 10 Soft Decision Error Correction

The user must implement circuitry at the receive end of the channel for making a finer (4 bit) estimation of the received energy. The AMBE-3000F™ Vocoder Chip uses a different channel data field (CHAND4) to specify channel data represented by 4 soft decision (SD) bits. The decoder will make the decision of whether or not a 1 or a 0 is represented by the SD bits.

Figure 18 Typical Echo Path

The echo canceller can be activated either through the hardware pin, or through the packet interface.
4.5.5 Skew Control (SK_ENABLE TQFP pin 6 BGA pin D3)

The AMBE-3000F™ Vocoder Chip processes speech in voice frames that are approximately 20 ms in duration. Skew control can provide the designer with flexibility in dealing with clock drift. The AMBE-3000F™ Vocoder Chip skew control feature allows the vocoder chip to compensate for drift between the frame and sample rate clocks.

Codec Mode

When skew control is enabled, the AMBE-3000F™ Vocoder Chip adjusts the frame boundaries so that they occur on the rising edge of the TX_RQST signal. The user must generate the TX_RQST signal such that the frame size varies between 156 and 164 samples.

Packet Mode Skew Control Enable

In packet mode the normal length of the input speech packets is 160 samples. However this can vary between 156 and 164 samples in length. Output speech packets can also vary in length from 156 to 164 samples.

4.5.6 Noise Suppressor (NS_ENABLE TQFP pin 7 BGA pin D2)

The integrated Noise suppressor feature of the AMBE-3000F™ Vocoder Chip is used to reduce the effect of background noise in the encoder input signal. The Noise suppressor is applied to both silence frames and voice frames, but not tone frames. When the noise suppressor is started it may take up to a few seconds to converge allowing for it to begin fully working.

4.5.7 Companding Using A-Law and µ-Law

The format of the digital speech I/O is critical to designing a system with superior voice quality. It is recommended that, when possible, 16-bit linear PCM data sampled at 8 kHz, be used for maximum voice quality. The AMBE-3000F™ Vocoder Chip supports either 16-bit linear, 8-bit A-law, or 8-bit µ-law formats. Given that a-law and µ-law companding formats already incorporate some compression to reduce the number of bits per sample, when choosing either format, pay particular attention to Signal to Noise ratios and Frequency Responses of any filters that may be present on the analog front end. The a-law and µ-law interfaces are provided for the design engineer who is trying to fit to pre-existing conditions or is under other cost type restraints. To enable/disable companding and select the format, use either hardware pins as described in the following tables or the COMPAND field (ID 0x32) as part of a Control packet.

<table>
<thead>
<tr>
<th>CP_ENABLE</th>
<th>TQFP pin 8 BGA pin D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companding Disabled</td>
<td>0</td>
</tr>
<tr>
<td>Companding Enabled</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 11 Companding Control

<table>
<thead>
<tr>
<th>CP_SELECT</th>
<th>TQFP pin 9 BGA pin F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select µ-law</td>
<td>0</td>
</tr>
<tr>
<td>Select a-law</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 12 Companding Selection
5 I/O Management

The AMBE-3000F™ Vocoder Chip offers a variety of interfaces that can be configured in a variety of ways. Selection of the physical interface and the operating Mode is determined from the configuration pins after reset. The AMBE-3000F™ Vocoder Chip uses an I/O Handler to manage data to/from the encoder/decoder according to the selected interfaces and operating mode. The I/O handler is also used to schedule calls to the encoder and decoder.

The I/O handler passes 160±4 Codec samples to the encoder for each 20 ms frame. In addition to passing the speech samples to the encoder for every 20 ms frame, the I/O Handler passes a 16-bit control word named ECMODE_IN to the encoder. ECMODE_IN is used to control various encoder features. Features set by ECMODE_IN will override the state as set by the corresponding hardware configuration pins. Each bit of ECMODE_IN is summarized in Table 13 ECMODE_IN Flags:

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Bit Name</th>
<th>Bit Description</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (LSB)</td>
<td>Reserved.0</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>1</td>
<td>Reserved.1</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>2</td>
<td>Reserved.2</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>3</td>
<td>Reserved.3</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>4</td>
<td>Reserved.4</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>5</td>
<td>Reserved.5</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>6</td>
<td>NS_ENABLE</td>
<td>Noise Suppressor Enable. If this bit is set the noise suppressor is enabled, otherwise the noise suppressor is disabled.</td>
<td>After reset, this bit is initialized using the setting from the NS_ENABLE pin.</td>
</tr>
<tr>
<td>7</td>
<td>CP_SELECT</td>
<td>Comand Select. If companding is enabled and CP_SELECT=0, then µ-law companding is selected. If companding is enabled, and CP_SELECT=1 then a-law companding is selected. If companding is not enabled, then this bit has no effect.</td>
<td>After reset, this bit is initialized using the setting from the CP_SELECT pin.</td>
</tr>
<tr>
<td>8</td>
<td>CP_ENABLE</td>
<td>Comand Enable. If CP_ENABLE=1, then companding is enabled (either a-law or u-law, depending on the setting of CP_SELECT). If CP_ENABLE=0, then companding is disabled and all speech samples are 16-bit linear.</td>
<td>After reset, this bit is initialized using the setting from the CP_ENABLE pin.</td>
</tr>
<tr>
<td>9</td>
<td>ES_ENABLE</td>
<td>Echo suppressor Enable. If ES_ENABLE=1, the echo suppressor is enabled, otherwise the echo suppressor is disabled.</td>
<td>After reset, this bit is initialized using the setting from the ES_ENABLE pin.</td>
</tr>
<tr>
<td>10</td>
<td>Reserved.10</td>
<td>Reserved</td>
<td>0 at reset</td>
</tr>
<tr>
<td>11</td>
<td>DTX_ENABLE</td>
<td>Discontinuous Transmission Enable. If DTX_ENABLE=1, then the encoder outputs a special silence frame whenever silence is detected. If DTX_ENABLE=0, then the encoder does not output special silence frames when silence is detected.</td>
<td>After reset, this bit is initialized using the setting from the DTX_ENABLE pin.</td>
</tr>
<tr>
<td>12</td>
<td>TD_ENABLE</td>
<td>Tone Detect Enable. If TD_ENABLE=1, then tone detection is enabled, otherwise tone detection is disabled.</td>
<td>This bit is initialized to 1 (tone detection enabled) at reset.</td>
</tr>
<tr>
<td>13</td>
<td>EC_ENABLE</td>
<td>Echo Canceller Enable. If EC_ENABLE=1, then the echo canceller is enabled, otherwise the echo canceller is disabled.</td>
<td>After reset, this bit is initialized using the setting from the EC_ENABLE pin.</td>
</tr>
<tr>
<td>14</td>
<td>TS_ENABLE</td>
<td>Tone Send Enable. If TS_ENABLE=1, then the encoder produces a tone frame in place of the frame that it would normally produce.</td>
<td>This bit is initialized to 0 at reset.</td>
</tr>
</tbody>
</table>
I/O Management

Table 13 ECOMODE_IN Flags

ECMODE_IN is initialized at reset as determined by various configuration pins. It is also possible to directly specify the value for ECOMODE_IN by sending a PKT_ECMODE field within a configuration control packet prior to starting up the codec interface or running the encoder. In addition, it is possible to specify ECOMODE_IN every 20 ms by passing the value in every packet (or selected packets). Note that ECOMODE_IN will retain its value until it is changed.

The encoder produces channel data for every 20 ms frame. The I/O handler places the channel data into an outgoing channel packet. The encoder also outputs a 16-bit status word named ECOMODE_OUT, for each 20 ms frame. The ECOMODE_OUT flags are as specified in the following Table 14 ECOMODE_OUT FLAGS

Note: ECOMODE_IN will retain its value until it is changed.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Bit Name</th>
<th>Bit description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>VOICE_ACTIVE</td>
<td>If DTX is enabled, via the DTX_ENABLE bit of ECOMODE_IN, then the encoder sets VOICE_ACTIVE=1 if the channel data for that frame must be transmitted. For frames which do not need to be transmitted, the encoder sets VOICE_ACTIVE=0. Note that when VOICE_ACTIVE=0, the encoder still produces a frame of channel data which may be transmitted if desired.</td>
</tr>
<tr>
<td>2-14</td>
<td>Reserved.2-Reserved.14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TONE_FRAME</td>
<td>The encoder sets this bit if the output frame contains either a single frequency tone, a DTMF tone, a KNOX tone, or a call progress tone.</td>
</tr>
</tbody>
</table>

Table 14 ECOMODE_OUT FLAGS

By default, the ECOMODE_OUT flags are not output within the channel packets. If access to the flags is needed, it is possible to configure the AMBE-3000F™ Vocoder Chip so that it will output the ECOMODE_OUT flags in every channel packet that is output or only when the ECOMODE_OUT flags change. The PKT_CHANFMT field within a configuration control packet is used to specify when/if the ECOMODE_OUT flags are output.

For each 20 ms frame, the I/O handler also passes a 16-bit control word named DCMODE_IN to the decoder. DCMODE_IN is used to control various decoder features. Each bit of DCMODE_IN is summarized in Table 15 DCMODE_IN Flags. DCMODE_IN is initialized at reset as determined by various configuration pins. It is also possible to directly specify the value for DCMODE_IN by sending a PKT_DCMODE field within a configuration control packet prior to starting up the codec interface or running the decoder. In addition, it is possible to specify DCMODE_IN every 20 ms by passing the value in every packet (or selected packets). Features set by DCMODE_IN will override the state as set by the corresponding hardware configuration pins.

Note: DCMODE_IN will retain its value until it is changed.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Bit Name</th>
<th>Bit Description</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reserved.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LOST_FRAME</td>
<td>Frame repeat enable. If LOST_FRAME=1, then the Decoder ignores any channel data provided to it and performs a frame repeat.</td>
<td>0 at reset.</td>
</tr>
</tbody>
</table>
I/O Management

Comfort Noise Insertion Enable. If CNI_FRAME=1, then the Decoder ignores any channel data provided to it and inserts comfort noise using the latest silence frame that was received by the decoder. (or the default silence frame if no silence frames have been received yet).

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Bit Name</th>
<th>Bit description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CNI_FRAME</td>
<td>Comfort Noise Insertion Enable. If CNI_FRAME=1, then the Decoder ignores any channel data provided to it and inserts comfort noise using the latest silence frame that was received by the decoder. (or the default silence frame if no silence frames have been received yet). 0 at reset.</td>
</tr>
<tr>
<td>4-6</td>
<td>Reserved.4-Reserved.6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CP_SELECT</td>
<td>Compand Select. If companding is enabled and CP_SELECT=0, then u-law companding is selected. If companding is enabled, and CP_SELECT=1 then a-law companding is selected. If companding is not enabled, then this bit has no effect. After reset, this bit is initialized using the setting from the CP_SELECT pin.</td>
</tr>
<tr>
<td>8</td>
<td>CP_ENABLE</td>
<td>Compand Enable. If CP_ENABLE=1, then companding is enabled (either a-law or u-law, depending on the setting of CP_SELECT). If CP_ENABLE=0, then companding is disabled and all speech samples are 16-bit linear. After reset, this bit is initialized using the setting from the CP_ENABLE pin.</td>
</tr>
<tr>
<td>9-13</td>
<td>Reserved.9-Reserved.13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TS_ENABLE</td>
<td>Tone Synthesis Enable. If TS_ENABLE=1, then the Decoder ignores any channel data provided to it and synthesizes the specified tone. 0 at reset.</td>
</tr>
<tr>
<td>15</td>
<td>Reserved.15</td>
<td></td>
</tr>
</tbody>
</table>

Table 15 DCMODE_IN Flags

The I/O handler also passes a frame of channel data, if available, to the decoder once every 20 ms. The decoder produces 160±4 speech samples for every 20 ms frame. In addition to outputting speech samples for each 20 ms frame, the decoder outputs a 16-bit status word named DCMODE_OUT. The DCMODE_OUT flags are as specified in Table 16 DCMODE_OUT Flags. If the I/O handler does not have a frame of channel data to pass to the decoder at the scheduled time, then the I/O Handler forces the decoder to perform a frame repeat by setting the appropriate bit in DCMODE_IN for that frame only.

Bit Number | Bit Name | Bit description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved.0</td>
<td>The decoder sets VOICE_ACTIVE=1 if the decoder synthesized a voice frame or a tone frame. If the decoder synthesized a comfort noise frame, then it sets VOICE_ACTIVE=0. The decoder can synthesize comfort noise in the following circumstances: (a) a comfort noise frame (silence frame) was received by the decoder. (b) The decoder FEC (if enabled) found too many errors. (c) more than 2 consecutive frame repeats were requested.</td>
</tr>
<tr>
<td>1</td>
<td>VOICE_ACTIVE</td>
<td>The decoder sets this bit whenever it performs a frame repeat. It also sets this bit if it inserted comfort noise due to channel errors or missing frames. The decoder will set DATA_INVALID=0 if it received a valid (voice, silence, or tone frame).</td>
</tr>
<tr>
<td>2-4</td>
<td>Reserved.2-Reserved.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DATA_INVALID</td>
<td>The decoder sets this bit whenever it decodes a tone frame.</td>
</tr>
<tr>
<td>6-14</td>
<td>Reserved.6-Reserved.14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TONE_FRAME</td>
<td>The decoder sets this bit whenever it decodes a tone frame.</td>
</tr>
</tbody>
</table>

Table 16 DCMODE_OUT Flags
5.1 Operating Modes Introduction

There are two modes (codec mode and packet mode) for the AMBE-3000F™ vocoder chip. Both modes can take advantage of the variety of interfaces available.

A good technique for smooth operation and data transfer is to design the system so that the AMBE-3000F™ Vocoder Chip boots into Packet Mode on start-up. This will allow the AMBE-3000F™ Vocoder Chip to be sitting idle and ready to receive configuration packets, independent of the channel interface being used. The user can then configure the AMBE-3000F™ Vocoder Chip as needed. This method is beneficial because it puts the chip in a known state until it is ready to be utilized. Figure 19 Switching between Packet and Codec Modes shows a flow chart of the events needed to switch between the two modes.

![Flowchart of Switching between Packet and Codec Modes](image-url)
5.2 Codec mode

In codec mode the speech data I/O (to/from codec) is a serial stream of samples that uses either the SPI or the McBSP interface and the channel data is configured into data packets that are sent across either the UART, parallel port, or McBSP (when not used as the codec interface). When using codec mode, the speech and channel data use separate interfaces. Packets containing channel data are sent and received every 20 ms.

![Codec Mode (SPI Interface)](image)
5.2.1 Timing of channel transmit packets in Codec Mode

When Skew Control is not used
The AMBE-3000™ vocoder chip outputs one packet per 20 ms. TX_RDY goes high once every 20 ms.

When Skew Control is used
The AMBE-3000™ vocoder chip outputs one packet per each TX_RQST 0 to 1 transition. TX_RDY goes high approximately 5.625 ms after TX_RQST 0 to 1 transition. TX_RDY goes high once every 20 ms.
5.2.2 Timing of channel receive packets in Codec Mode

In general, every time the AMBE-3000™ vocoder chip transmits a packet it should also receive a packet.

At time “A” the AMBE-3000™ Vocoder Chip sets TX_RDY high

When using the PPT packet interface
the reading of a packet from the PPT can begin.

When using the UART or MCBSP packet interface
the AMBE-3000™ Vocoder Chip will begin transmitting a channel packet.

During each 20 ms frame interval as indicated by the TX_RDY signal, the decoder should receive exactly one packet. Between time “B” and “C” (the “Packet_Uncertainty_Zone”) the vocoder should not receive any channel packets.

The following figure illustrates the simplest way to send packets to the AMBE-3000™ Vocoder Chip
In the above figure packets are transmitted to the AMBE-3000™ Vocoder Chip with a fixed-period of 20 ms. The AMBE-3000™ Vocoder Chip must receive exactly one channel packet per frame period and the “Packet_Uncertainty_Zone” should be avoided.

The following figure shows some examples of packet timing that are aperiodic

![Figure 26 TX_RDY Frame interval Examples](image)

When the AMBE-3000™ Vocoder Chip receives a packet during the “Packet_Uncertain_Zone” it is indeterminate which frame interval will be assigned to the packet. If the AMBE-3000™ Vocoder Chip does not receive any packets during a frame interval, then the decoder will fill in the gap by synthesizing a frame of speech using the model parameters from the prior speech frame. This is known as a frame repeat. If two packets are received during a frame interval then the older channel packet will be discarded.

Note that infrequent “erasure frames” and “frame repeats” can be acceptable in a system and may be a suitable way to account for differences in the transmit and receive clocks.

Note that the frame intervals are defined relative to TX_RDY which is assumed to be synchronous with transmitted frames.

5.2.3 I/O Handler in Codec Mode

When the AMBE-3000F™ Vocoder Chip is in codec mode, speech samples are received and transmitted via the codec interface. In codec mode, the schedule for the encoder is based upon the codec clock or the TXRQST signal, if skew control is enabled.
For codec mode, DCMODE_OUT can be output within every outgoing channel packet. By default, outgoing channel packets do not contain DCMODE_OUT flags. The PKT_CHANFMT field used within a configuration control packet can be used to tell the I/O handler to put DCMODE_OUT flags into subsequent outgoing channel packets.

5.3 Packet Mode

In packet mode, the speech and channel data use the same interface (either UART, parallel port, or McBSP serial port). All of the speech and channel data to/from the AMBE-3000F™ Vocoder Chip is formatted into packets. It is the responsibility of the designed system to extract the speech/channel data from these packets in order to pass the information to/from the codec/channel interface.

The AMBE-3000F™ Vocoder Chip sends a packet in response to every packet received. When a control packet is received it will respond with a control response packet. When a speech packet is received the AMBE-3000F™ Vocoder Chip responds with a channel packet. When a channel packet is received it responds with a speech packet.
5.3.1 I/O Handler In Packet Mode

When the AMBE-3000F™ Vocoder Chip is in packet mode speech samples are received and transmitted via the packet interface. In packet mode, the encoder is scheduled whenever the I/O handler receives a speech packet and the decoder is scheduled each time a channel packet is received. In packet mode, multiple packets may be in the packet queue. The encoder is scheduled when a speech packet is taken off the queue and the decoder is scheduled when a channel packet is taken off the queue. Note that packets are taken off the queue in the order that they were received.

For packet mode DCMODE_OUT can be output within PKT_CMODE fields within outgoing speech packets. By default, speech packets do not contain PKT_CMODE fields, but the PKT_SPEECHFMT field used within a configuration control packet, can be used to tell the I/O handler to put DCMODE_OUT flags into subsequent outgoing speech packets. For packet mode, the I/O handler outputs the speech samples using a PKT_SPEECHD field within an outgoing speech packet.
Figure 29 Packet Mode

Received packets are placed into a queue and response packets are generated in the order that the packets were received. If the AMBE-3000F™ Vocoder Chip stops receiving packets, then it will stop sending packets after responding to the final packet received.

5.4 Switching between codec mode and packet mode using packets

Upon boot up or after a reset the AMBE-3000F™ Vocoder Chip is set to the mode (either codec mode or packet mode) corresponding to the interface configuration pins (see Table 9 Physical Interface Selection). Switching the AMBE-3000F™ Vocoder Chip from packet mode into codec mode or from codec mode into packet mode can be done through software using configuration packets. The user can switch the AMBE-3000F™ Vocoder Chip between modes at any time using control packets. (See Section Data and Configuration Packets)

To switch the AMBE-3000F™ Vocoder Chip from packet mode into codec mode using packets, a control packet with the field identifier of 0x2A “PKT_STARTCODEC” (See Section Data and Configuration Packets) must be sent to the AMBE-30000™ Vocoder Chip. The data byte in the PKT_START_CODEC packet selects either SPI or McBSP for the codec interface. When the AMBE-3000F™ Vocoder Chip is in codec mode it outputs channel packets automatically, once every 20 ms. It also expects to receive a channel packet once every 20 ms. All timing is relative to the codec clock.

To switch the AMBE-3000F™ Vocoder Chip from codec mode into packet mode using packets, a control packet with the field identifier of 0x2B “PKT_CODECSTOP” (See Table 59 PKT_CODECSTOP Field) must be sent to the AMBE-30000™
Vocoder Chip. When in packet mode the AMBE-3000F™ Vocoder Chip no longer outputs channel packets automatically every 20 ms and the codec interface is inactive.

5.5 SPI Interface

The serial peripheral interface (SPI) is a high-speed, synchronous serial I/O port that can be used as the speech interface to the codec. This interface allows a serial bit stream to be transferred between the AMBE-3000F™ Vocoder Chip and an audio codec. The interface includes four pins. The SPI interface is designed for speech data only and may be used only in codec mode.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP 27</td>
<td>K2</td>
<td>Input</td>
<td>SPI_CLK, A/D Serial clock.</td>
</tr>
<tr>
<td>BGA 28</td>
<td>K4</td>
<td>Input</td>
<td>SPI_STE, The framing signal generated from SPI_GENSTE.</td>
</tr>
<tr>
<td>TQFP 31</td>
<td>M1</td>
<td>Input</td>
<td>SPI_RX_DATA, PCM Data from A/D Converter to AMBE-3000F™ Vocoder Chip</td>
</tr>
<tr>
<td>BGA 32</td>
<td>N1</td>
<td>Output</td>
<td>SPI_TX_DATA, PCM Data from AMBE-3000F™ Vocoder Chip to D/A Converter</td>
</tr>
</tbody>
</table>

Table 17 SPI Interface Pins

![SPI Timing Diagram](image)

Figure 30 SPI Timing

The SPI_STE signal is asserted low at least 136 ns before the valid SPI_CLK edge and remains low for at least 136 ns after the receiving edge of the last data bit.

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI_CLK Cycle time (t_{spi})</td>
<td>272 ns</td>
<td>7.8 μs</td>
</tr>
<tr>
<td>SPI_CLK low Pulse duration (t_{lw})</td>
<td>126 ns</td>
<td>3.9 μs</td>
</tr>
<tr>
<td>SPI_CLK high Pulse duration (t_{hw})</td>
<td>126 ns</td>
<td>3.9 μs</td>
</tr>
</tbody>
</table>
Table 18 SPI Timing

The AMBE-3000F™ Vocoder Chip can generate the signal SPI_GENSTE from signals SPI_FSn and SPI_CLK_IN. See Figure 31 Timing of SPI_GENSTE for the timing relationship between these signals.

![Figure 31 Timing of SPI_GENSTE](image)

5.6 UART Interface

The serial interface supports asynchronous communication of real-time compressed voice data to other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. The UART interface is designed for packet data only. If the UART interface is used when running in codec mode the interface provides only channel data. If the UART interface is used when running in packet mode the UART provides both speech data and channel data.

When UART interface is used for the packet interface neither the McBSP nor the parallel interface can be used.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>C7</td>
<td>Output</td>
<td>UART Transmit Data</td>
</tr>
<tr>
<td>112</td>
<td>A7</td>
<td>Input</td>
<td>UART Receive Data</td>
</tr>
</tbody>
</table>

Table 19 UART Interface Pins

The AMBE-3000F™ Vocoder Chip transmits packets using pin UART_TX and receives packets using pin UART_RX. Each serial word transmitted or received uses 8 data bits, no parity bits, and one stop bit. The serial port operates at baud rates from 28800 up to 460,800 baud. See Table 20 UART Baud Rates for available rates and configuration.

<table>
<thead>
<tr>
<th>Baud Rate (baud)</th>
<th>S_COM_RATE2</th>
<th>S_COM_RATE1</th>
<th>S_COM_RATE0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TQFP Pin 91</td>
<td>TQFP Pin 90</td>
<td>TQFP Pin 89</td>
</tr>
<tr>
<td></td>
<td>BGA Pin F10</td>
<td>BGA Pin E11</td>
<td>BGA Pin E13</td>
</tr>
<tr>
<td>28,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57,600</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
5.6.1 UART_TX Pin State

When designing a system using the UART interface on the AMBE-3000™ Vocoder Chip it is necessary that the UART_TX pin (pin 111 QFP – pin C7 BGA) be held high at boot. This will ensure the AMBE-3000™ Vocoder Chip will start in the proper configuration. If the UART is not used in your design it can be left unconnected (there is an internal pull up resistor).

5.7 McBSP Interface

The Multichannel Buffered Serial Port (McBSP) is a synchronous serial communication port. The beginning of a word of data is indicated by a frame signal. The receive frame signal and receive clock are inputs and must be generated by the device interfacing to the AMBE-3000™ Vocoder Chip. The McBSP interface can be used as either the codec interface or the packet interface. When the McBSP interface is used as the codec interface for speech data it is not available for packet data. When operating as the packet interface the McBSP interface is used for packet data.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>G2 McBSP_RxD</td>
<td>Input</td>
<td>Serial Receive Data</td>
</tr>
<tr>
<td>19</td>
<td>G1 McBSP_TxD</td>
<td>Output</td>
<td>Serial Transmit Data</td>
</tr>
<tr>
<td>21</td>
<td>H2 McBSP_CLKR</td>
<td>Input</td>
<td>Serial Receive Clock</td>
</tr>
<tr>
<td>22</td>
<td>H4 McBSP_FSX</td>
<td>I/O</td>
<td>Serial Transmit Frame</td>
</tr>
<tr>
<td>23</td>
<td>J1 McBSP_CLKX</td>
<td>I/O</td>
<td>Serial Transmit Clock</td>
</tr>
<tr>
<td>24</td>
<td>J2 McBSP_FSR</td>
<td>Input</td>
<td>Serial Receive Frame</td>
</tr>
</tbody>
</table>

Table 21 McBSP Interface Pins

5.7.1 McBSP Selected for Codec Interface

If the McBSP is selected as the codec interface and companding is selected there are 8 data bits (In Figure 32 N=8). If companding is not used then there are 16 data bits (In Figure 32 N=16). The bits are order from N-1 to 0, where bit N-1 is the MSB and bit 0 is the LSB. McBSP_RxD is sampled on the rising edge of McBSP_CLKR and McBSP_TxD is sampled on the falling edge of McBSP_CLKR. The signals McBSP_CLKX, McBSP_CLKR, McBSP_FSX and McBSP_FSR are all inputs generated by the codec. McBSP_CLKX and McBSP_CLKR should be connected together. McBSP_FSX and McBSP_FSR should also be connected together.

Note: The higher the frequency of the MCBSP clock the more power consumption is reduced when low-power mode is enabled.
Figure 32 Timing of McBSP When Selected as Codec Interface

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Cycle time, for McBSP_CLK(X/R)</td>
<td>300 ns</td>
<td>16 µs</td>
</tr>
<tr>
<td>M2</td>
<td>Pulse duration, for McBSP_CLK(X/R) High</td>
<td>150 ns</td>
<td>8 µs</td>
</tr>
<tr>
<td>M3</td>
<td>Pulse duration, for McBSP_CLK(X/R) Low</td>
<td>150 ns</td>
<td>8 µs</td>
</tr>
<tr>
<td>M4</td>
<td>Rise Time, for McBSP_CLK(X/R)</td>
<td></td>
<td>7 ns</td>
</tr>
<tr>
<td>M5</td>
<td>Fall Time, for McBSP_CLK(X/R)</td>
<td></td>
<td>7 ns</td>
</tr>
<tr>
<td>M6</td>
<td>Hold time McBSP_RXD valid after McBSP_CLK(X/R) high</td>
<td>6 ns</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>Setup time McBSP_FS(X/R) valid before McBSP_CLK(X/R) high</td>
<td>2 ns</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>Hold time McBSP_FS(X/R) high after McBSP_CLK(X/R) high</td>
<td>6 ns</td>
<td></td>
</tr>
</tbody>
</table>

Table 22 McBSP Codec Interface Timing

5.7.2 McBSP Selected for Packet Interface

If the McBSP is selected for the packet interface, packets are transmitted using data pin McBSP_TXD, clock pin McBSP_CLKX, and framing pin McBSP_F SX. Packets are received using data pin McBSP_RXD, clock pin McBSP_CLKR, and framing pin McBSP_FSR. There are 8 data bits per frame pulse. McBSP_RXD is sampled on the falling edge of McBSP_CLKR and McBSP_TXD is sampled on the rising edge of McBSP_CLKX. McBSP_CLKR and McBSP_FSR are inputs. McBSP_CLKX, McBSP_F SX are outputs. The clock frequency on McBSP_CLKX is determined from S_COM_RATE(2-0) as shown in Table 24 McBSP Clock Rates.
Figure 33 Timing of McBSP when Selected as Packet Interface

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Cycle time, for McBSP_CLKR and McBSP_CLKX</td>
<td>1.085 µs</td>
<td>69.44 µs</td>
</tr>
<tr>
<td>M2</td>
<td>Pulse duration, for McBSP_CLKR and McBSP_CLKX High</td>
<td>535.53 ns</td>
<td>34.72 µs</td>
</tr>
<tr>
<td>M3</td>
<td>Pulse duration, for McBSP_CLKR and McBSP_CLKX Low</td>
<td>535.53 ns</td>
<td>34.72 µs</td>
</tr>
<tr>
<td>M4</td>
<td>Rise Time, for McBSP_CLKR and McBSP_CLKX</td>
<td>7 ns</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>Fall Time, for McBSP_CLKR and McBSP_CLKX</td>
<td>7 ns</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>Setup Time, for McBSP_FSR high before McBSP_CLKR low</td>
<td>2 ns</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>Hold Time, for McBSP_FSR high after McBSP_CLKR low</td>
<td>6 ns</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>Setup time McBSP_RXD valid before McBSP_CLKR low</td>
<td>2 ns</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>Hold time McBSP_RXD valid after McBSP_CLKR low</td>
<td>6 ns</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>Delay time McBSP_CLKX high to McBSP_FSX transmission and McBSP_TXD transission</td>
<td>3 ns</td>
<td>27 ns</td>
</tr>
</tbody>
</table>

Table 23 McBSP Packet Interface Timing
The McBSP port operates at clock rates from 28,800 up to 921,600 Hz. Note that this specifies the rate at which the packet will be transmitted. The receive clock and frame signals must generated by the device being interfaced to the AMBE-3000F™ Vocoder Chip. The receive clock supplied to the AMBE-3000F™ Vocoder Chip must be between 28,000 Hz and 921,600 Hz. See Table 24 McBSP Clock Rates for available rates and configuration.

5.8 Parallel Interface

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parallel Port Transmit/Receive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O</td>
<td>Data</td>
</tr>
<tr>
<td>TQFP</td>
<td>BGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>N2</td>
<td>I/O</td>
<td>PPT_DATA0</td>
</tr>
<tr>
<td>34</td>
<td>P2</td>
<td>I/O</td>
<td>PPT_DATA1</td>
</tr>
<tr>
<td>35</td>
<td>N3</td>
<td>I/O</td>
<td>PPT_DATA2</td>
</tr>
<tr>
<td>36</td>
<td>P3</td>
<td>I/O</td>
<td>PPT_DATA3</td>
</tr>
<tr>
<td>37</td>
<td>L4</td>
<td>I/O</td>
<td>PPT_DATA4</td>
</tr>
<tr>
<td>38</td>
<td>M4</td>
<td>I/O</td>
<td>PPT_DATA5</td>
</tr>
<tr>
<td>40</td>
<td>K5</td>
<td>I/O</td>
<td>PPT_DATA6</td>
</tr>
<tr>
<td>41</td>
<td>N5</td>
<td>I/O</td>
<td>PPT_DATA7</td>
</tr>
<tr>
<td>46</td>
<td>N6</td>
<td>Input</td>
<td>PPT Read Request (Active Low)</td>
</tr>
<tr>
<td>47</td>
<td>L6</td>
<td>Input</td>
<td>PPT Write Request (Active Low)</td>
</tr>
<tr>
<td>48</td>
<td>K7</td>
<td>Output</td>
<td>PPT Transfer Acknowledge</td>
</tr>
</tbody>
</table>

Table 25 Parallel (PPT) Interface Pins

5.8.1 Parallel Port Packet Interface

The parallel interface runs asynchronously and allows all packet data transfers to be performed on an 8-bit wide bus. The parallel port interface (PPT) requires 11 pins total. When parallel port is used for the packet interface the UART or the McBSP serial interface can not be used. The parallel interface is designed for packet data. This means that in codec mode the parallel interface can be used for channel data only. In packet mode the parallel interface is used for both speech data and channel data as well as control packets.

The AMBE-3000F™ Vocoder Chip will set TX_RDY high when data is available to be read from the parallel port.

The packet data from the AMBE-3000F™ Vocoder Chip is read by setting the pin PPT_READ low, then waiting for the AMBE-3000F™ Vocoder Chip to set PPT_ACK low. After PPT_ACK goes low, the 8 data pins are valid, after the pins are read PPT_READ should be set high. After PPT_READ goes high, the AMBE-3000F™ Vocoder Chip will set PPT_ACK high.
To write packet data to the AMBE-3000F™ Vocoder Chip first the data is transferred to the 8 data pins and then the PPT_WRITE pin must be set low. Then the AMBE-3000F™ Vocoder Chip reads the data from the pins and sets PPT_ACK low. After the AMBE-3000F™ Vocoder Chip sets PPT_ACK low, PPT_WRITE pin must set high, at which time, the AMBE-3000F™ Vocoder Chip will set PPT_ACK high.

![PPT Interface Timing](image)

Figure 34 PPT Interface Timing

<table>
<thead>
<tr>
<th>PPT Timing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_a</td>
<td>$t_a \leq 5 \mu s$ (1.12 \mu s typical)</td>
</tr>
<tr>
<td>t_b</td>
<td>System Dependent</td>
</tr>
<tr>
<td>t_c</td>
<td>< 320 ns</td>
</tr>
<tr>
<td>t_d</td>
<td>850 ns min.</td>
</tr>
</tbody>
</table>

Table 26 PPT Timing

The time between when the AMBE-3000F™ Vocoder Chip sets PPT_ACK Low and the user sets PPT_WRITE high has to be >0. Times $t_a + t_b + t_c$ all determines what the maximum rate is. The lower t_b is the faster the transfer rate. The transfer rate is as follows:

Transfer Rate (bits/sec) = \(\frac{8}{(t_a + t_b + t_c)} \)
At time 1 controller sets PPT_READ (PPT_WRITE) low to request to read (write) from the PPT interface.
At time 2 the AMBE-3000F™ Vocoder Chip sets the PPT_ACK low and the PPT_DATA is valid.
At time 3 the controller has read (written) the data and now sets the PPT_READ (PPT_WRITE) high.
At time 4 the AMBE-3000F™ Vocoder Chip sets the PPT_ACK high after the PPT_READ (PPT_WRITE) goes back to high.

For Example: If the designed system uses $t_b < 0.5 \mu s$ the parallel port can transfer data, at rates exceeding 4.1 Mbps.

5.9 Codec A/D / D/A Interface

The AMBE-3000F™ Vocoder Chip operates with a speech data sample rate of 8kHz for both the A/D and D/A interfaces. This 8kHz data is input and output using a serial port on the AMBE-3000F™ Vocoder Chip. The user can choose between hardware configuration pins or software control in order to the process of configuring the interface to the A/D-D/A chip.

5.10 Vocoder Front End Requirements

In order to ensure proper performance from the voice coder, it is necessary for the vocoder front end to meet a set of minimum performance requirements. For the purposes of this section the vocoder front end is considered to be the total combined response between microphone/speaker and the digital PCM interface to the vocoder, as shown in Figure 35 Typical Vocoder Implementation. This includes any analog electronics plus the A-to-D and D-to-A converters as well as any digital filtering performed prior to the voice encoder or after the voice decoder.

![Figure 35 Typical Vocoder Implementation](image)

The AMBE+™ voice encoder and decoder operate with unity (i.e. 0 dB) gain. Consequently the analog input and output gain elements shown in Figure 36 Vocoder Front End are only used to match the sensitivity of the microphone and speaker with the A-to-D converters and D-to-A converters, respectively.
It is recommended that the analog input gain be set such that the RMS speech level under nominal input conditions is 25 dB below the saturation point of the A-to-D converter (+3 dBm0). This level, which equates to -22 dBm0, is designed to provide sufficient margin to prevent the peaks of the speech waveform from being clipped by the A-to-D converter.

The voice coder interface requires the A-to-D and D-to-A converters to operate at an 8 kHz sampling rate (i.e. a sampling period of 125 microseconds) at the digital input/output reference points. This requirement necessitates the use of analog filters at both the input and output to eliminate any frequency components above the Nyquist frequency (4 kHz). The recommended input filter mask is shown in Figure 37 Front End Input Filter Mask, and the recommended output filter mask is shown in Figure 38 Front End Output Filter Mask. For proper operation, the shaded zone of the respective figure should bound the frequency response of the front-end input and output.
This document assumes that the A-to-D converter produces digital samples where the maximum digital input level (+3 dBm0) is defined to be +/- 32767, and similarly, that the maximum digital output level of the D-to-A converter occurs at the same digital level of +/- 32767. If a converter is used which does not meet these assumptions then the digital gain elements shown in Figure 36 Vocoder Front End should be adjusted appropriately. Note that these assumptions are automatically satisfied if 16 bit linear A-to-D and D-to-A converters are used, in which case the digital gain elements should be set to unity gain.

An additional recommendation addresses the maximum noise level measured at the output reference points shown in Figure 36 Vocoder Front End with the corresponding inputs set to zero. DVSI recommends that the noise level for both directions should not exceed -60 dBm0 with no corresponding input. In addition, the isolation from cross talk (or echo) from the output to the input should exceed 45 dB which can be achieved via either passive (electrical and/or acoustic design) or active (echo cancellation and/or suppression) means.

5.11 Interfacing a codec to the AMBE-3000F™ Vocoder chip

5.11.1 The Texas Instruments General purpose TLV320AIC14

The Texas Instruments’ TLV320AIC14 codec presents a simple low cost solution for use with DVSI’s AMBE-3000F™ vocoder chip. This example provides information on interfacing the TLV320AIC14 to the AMBE-3000F™ Vocoder chip SPI interface.
The control registers in the TLV320AIC14 codec must be initialized for proper operation. The recommended procedure is to initialize the TLV320AIC14 by writing data to 5 control registers via packet from the AMBE-3000F™ Vocoder Chip.

<table>
<thead>
<tr>
<th>Control Register</th>
<th>Configuration Data</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x41</td>
<td>set 16 bit DAC mode, set continuous data transfer mode</td>
</tr>
<tr>
<td>2</td>
<td>0xA0</td>
<td>set TURBO=1 (SCLK=MCLK/P), keep I2C addr=4</td>
</tr>
<tr>
<td>4</td>
<td>0x83</td>
<td>set M=3</td>
</tr>
<tr>
<td>5C</td>
<td>0xB8</td>
<td>sidetone=MUTE</td>
</tr>
<tr>
<td>6</td>
<td>0x02</td>
<td>set input MICIN self biased at 1.35 V</td>
</tr>
</tbody>
</table>

Table 27 Control Register Value for the TLV320AIC14

Various configuration data can be used to control the operation of the TLV320AIC14 codec (see its data sheet for more information), however for reference the AMBE-3000F™ Vocoder Chip has been tested with the TLV320AIC14 configured using the register values shown in Table 27 Control Register Value for the TLV320AIC14. A reset to the TLV320AIC14 codec will reset all of the internal registers. As a result, the TLV320AIC14 must be reconfigured following a reset.

5.11.2 The Texas Instruments PCM3500 General purpose codec

Another example of a low cost general purpose codec is the Texas Instruments. This example provides information on interfacing the PCM35000 to the AMBE-3000F™ Vocoder chip’s McBSP interface.
Figure 40 AMBE-3000F™ Vocoder Chip and PCM3500 Interface Block Diagram
6 Data and Configuration Packets

6.1 Overview

Interfacing to the AMBE-3000F™ Vocoder Chip is engineered to provide as much flexibility as possible. The AMBE-3000F™ Vocoder Chip always uses a packet format for the compressed voice data bits and for the chip configuration/control. The packets can be transferred using the UART port, parallel port or McBSP serial port for a physical interface based on the setting of hardware configuration pins. Packets are designed such that they can be as small as possible.

The AMBE-3000F™ Vocoder Chip uses packets whether it is running in codec mode or packet mode. When in codec mode the packets are used for communicating with the AMBE-3000F™ Vocoder Chip to configure the vocoder, poll vocoder status information, as well as, transferring compressed voice bits from the encoder or to the decoder. When running in packet mode the packets provide the same capabilities as codec mode plus they have the ability to transfer speech data samples to the encoder or from the decoder.

Every packet includes a HEADER that consists of a START byte for identification of the beginning of the packet, LENGTH data to indicate how many bytes are in the packet and a TYPE byte that specifies what to do with the packet. Packets are processed in a first-in-first-out manner.

6.2 Codec Mode Operation

When the AMBE-3000F™ Vocoder Chip is in codec mode the chip uses separate interfaces for the digitized speech data samples and the compressed data bits. In this mode the AMBE-3000F™ Vocoder Chip automatically sends out compressed data bits (channel data) packets every 20ms and expects to receive compressed data bits (channel data) packets every 20ms. The timing of the data transfer depends on the codec clock.

6.3 Packet Mode Operation

In packet mode the AMBE-3000F™ Vocoder Chip uses the same interface for the digitized speech data samples and the compressed data bits. In this mode, when the AMBE-3000F™ Vocoder Chip receives packets, it processes the packets and sends response packets as soon as the data is ready. The AMBE-3000F™ Vocoder Chip sends response packets in the same order that the packets are received. The AMBE-3000F™ Vocoder Chip maintains a FIFO for received packets and a separate FIFO for packets that are awaiting transmission. The FIFOs are each large enough to accommodate up to two speech packets and two channel packets. The AMBE-3000F™ Vocoder Chip can continue to transmit/receive packets while it is still processing prior packets.

When the AMBE-3000F™ Vocoder Chip receives a speech packet, it takes the speech samples from the packet, encodes them and sends back a channel packet.

When the AMBE-3000F™ Vocoder Chip receives a channel packet, it takes the channel data from the packet, decodes the channel data, and sends back a speech packet.

When the AMBE-3000F™ Vocoder Chip receives a configuration control packet, it makes the requested configuration changes and sends back a configuration response packet.
6.4 Packet Interfaces

The AMBE-3000F™ Vocoder Chip supports three separate physical interfaces that handle packets: UART, parallel port, and McBSP serial port. The user selects one of the three ports via configuration pins which are read by the AMBE-3000F™ Vocoder Chip after power-up or reset. The packet formats are identical regardless of which physical interface is selected. Only one port is active at a time.

6.5 Packet Format

The AMBE-3000F™ Vocoder Chip supports packets with a parity field or packets without a parity field. The packet format is as shown in Table 28 General Packet Format WITHOUT Parity Field and Table 29 General Packet Format WITH Parity Field. A packet always starts with a PACKET HEADER byte. The next two bytes contain the PACKET LENGTH and the next byte contains the PACKET TYPE. Each packet can contain one or more fields which are shown as FIELD0 through FIELDn in Table 28 and Table 29. By default, parity fields are enabled after reset.

<table>
<thead>
<tr>
<th>General Packet Format WITHOUT Parity Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Header</td>
</tr>
<tr>
<td>START_BYTE</td>
</tr>
<tr>
<td>1 byte</td>
</tr>
<tr>
<td>0x61</td>
</tr>
</tbody>
</table>

| Table 28 General Packet Format WITHOUT Parity Field |

<table>
<thead>
<tr>
<th>General Packet Format WITH Parity Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Header</td>
</tr>
<tr>
<td>START_BYTE</td>
</tr>
<tr>
<td>1 byte</td>
</tr>
<tr>
<td>0x61</td>
</tr>
</tbody>
</table>

| Table 29 General Packet Format WITH Parity Field |

6.5.1 START_BYTE (1 byte)

Referring to Table 28 General Packet Format WITHOUT Parity Field, the START_BYTE byte always has a fixed value of 0x61.

6.5.2 LENGTH (2 bytes)

Referring to Table 28 General Packet Format WITHOUT Parity Field and Table 29 General Packet Format WITH Parity Field, the PACKET LENGTH occupies the second two bytes of the packet. The MS byte of the packet length is the second byte of the packet and the LS byte of the packet length is the third byte of the packet. To calculate the PACKET LENGTH take the sum of L0 through L(N-1) plus the parity bytes (if parity is used). Do not include the 4 bytes (START_BYTE, PACKET LENGTH, and PACKET TYPE) from the Packet Header in the PACKET LENGTH. Therefore in Table 28 General Packet Format WITHOUT Parity Field the PACKET LENGTH is the sum of L0 through L(N-1). With Parity field Enabled as shown in Table 29 General Packet Format WITH Parity Field, the PACKET LENGTH is the sum of L0 through L(N-1) plus the Parity bytes.

Note that the PACKET LENGTH excludes the first 4 bytes taken up by the START_BYTE, PACKET LENGTH, and PACKET TYPE. PACKET LENGTH is therefore the total length (in bytes) of the entire packet minus 4 bytes.
6.5.3 TYPE (1 byte)

Referring to Table 28 General Packet Format WITHOUT Parity Field, the PACKET TYPE occupies the fourth byte of every packet.

There are 3 different packet types for the AMBE-3000F™ vocoder chip.

<table>
<thead>
<tr>
<th>Packet Name</th>
<th>Description</th>
<th>Type Value (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control / Configuration Packet</td>
<td>Used to setup chip modes, rates, configure hardware, initialize encoder/decoder, enable low-power mode, specify output packet formats, etc. When a control packet is received the chip returns a control packet with response fields that contain response data for some control packets or indication of errors in the control packet.</td>
<td>0x00</td>
</tr>
<tr>
<td>Speech Packet</td>
<td>These packets are used to input speech data to encoder and to output speech data from the decoder. In addition to speech data, the packet can provide flags to control the encoder operation on a frame-by-frame basis. The speech packet also can have a field that forces the encoder to produce a tone frame.</td>
<td>0x02</td>
</tr>
<tr>
<td>Channel Packet</td>
<td>These packets are used to input channel data to the decoder and to output channel data from the encoder. In addition to channel data the packet can provide flags that control the decoder operation on a frame-by-frame basis. A channel packet can also contain a field that forces the decoder to produce a tone frame.</td>
<td>0x01</td>
</tr>
</tbody>
</table>

Table 30 Packet Types

6.5.4 Packet Fields

Referring to Table 28 General Packet Format WITHOUT Parity Field, the remainder of a packet after the START_BYTE, LENGTH, and TYPE is made up of packet fields. The packet fields contain the useful packet information. Various different packet fields each with their own format are defined in the next sections, however, the general format of a field is shown in Table 31 General Field Format.

A field consists of a field identifier followed by field data. The length of field data is dependent upon the field identifier. Many fields have fixed lengths. Some fields, such as those that contain speech samples or channel data are variable in length; and in such cases the length of the field data is embedded inside field data.

<table>
<thead>
<tr>
<th>Field - Packet Format</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
<td>Field Data</td>
</tr>
<tr>
<td>1 byte</td>
<td>(L_n)-1 bytes</td>
</tr>
</tbody>
</table>

Table 31 General Field Format
6.5.5 Parity Field (Parity is enabled by default)

When parity fields are enabled the AMBE-3000F™ Vocoder Chip inserts a 2-byte field at the end of all output packets. The first byte of the parity field is the parity field identifier and is always equal to 0x2f. The second byte of the parity field is the parity byte. It is obtained by “Exclusive-or-ing” every byte in the packet, except for the START_BYTE and the PARITY_BYTE, together. If parity fields are enabled, the AMBE-3000F™ Vocoder Chip checks the parity byte for all received packets and discards any packet that has an incorrect parity byte. Parity fields can be enabled or disabled (for all future input and output packets) by sending a PKT_PARITYMODE field in a control packet.

6.6 Control Packet Format (Packet Type 0x00)

A control packet uses the format as shown in either Table 28 General Packet Format WITHOUT Parity Field or Table 29 General Packet Format WITH Parity Field where the PACKET TYPE is equal to 0x00.

Control packets can be used to configure the chip prior to operation and also to query for information from the chip. A control packet must contain one or more control fields. For each control packet received, the AMBE-3000F™ Vocoder Chip sends back a response packet. The response packet for most fields just echoes back the control field identifier followed by a 0x00 byte to indicate that the control field was received successfully. For control fields that query for information, the response packet contains the Requested information (1 or more bytes depending upon the control field identifier).

6.6.1 Control Packet Fields and Response Fields

The control packet supports the following packet fields:

<table>
<thead>
<tr>
<th>Control Packet – Fields</th>
<th>Field Identifier Name</th>
<th>Field Identifier Code</th>
<th>Control Field Data Length (bytes)</th>
<th>Response Field Data Length (bytes)</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PKT_CHANNEL0</td>
<td>0x40</td>
<td>none</td>
<td>none</td>
<td>I/O</td>
<td>The subsequent fields are for channel 0</td>
</tr>
<tr>
<td></td>
<td>PKT_ECMODE</td>
<td>0x05</td>
<td>2</td>
<td>none</td>
<td>I/O</td>
<td>Encoder cmode flags for current channel</td>
</tr>
<tr>
<td></td>
<td>PKT_DCMODE</td>
<td>0x06</td>
<td>2</td>
<td>none</td>
<td>I/O</td>
<td>Decoder cmode flags for current channel</td>
</tr>
<tr>
<td></td>
<td>PKT_COMPAND</td>
<td>0x32</td>
<td>1</td>
<td>none</td>
<td>I/O</td>
<td>Companding ON/OFF and a-law/µ-law selection</td>
</tr>
<tr>
<td></td>
<td>PKT_RATEP</td>
<td>0x09</td>
<td>1</td>
<td>none</td>
<td>I/O</td>
<td>Select rate from table for current channel</td>
</tr>
<tr>
<td></td>
<td>PKT_INIT</td>
<td>0x0B</td>
<td>1</td>
<td>none</td>
<td>I/O</td>
<td>Initialize encoder and/or decoder for current channel</td>
</tr>
<tr>
<td></td>
<td>PKT_LOWPOWER</td>
<td>0x10</td>
<td>1</td>
<td>none</td>
<td>I/O</td>
<td>Enable or disable low-power mode</td>
</tr>
<tr>
<td></td>
<td>PKT_CODECCFG</td>
<td>0x38</td>
<td>varies</td>
<td>none</td>
<td>I/O</td>
<td>Sends configuration packet to codec</td>
</tr>
<tr>
<td></td>
<td>PKT_CODECSTART</td>
<td>0x2A</td>
<td>1</td>
<td>none</td>
<td>I/O</td>
<td>Switches from packet mode to codec mode</td>
</tr>
<tr>
<td></td>
<td>PKT_CODECSTOP</td>
<td>0x2B</td>
<td>none</td>
<td>none</td>
<td>I/O</td>
<td>Switches from codec mode to packet mode</td>
</tr>
<tr>
<td></td>
<td>PKT_CHANFMT</td>
<td>0x15</td>
<td>2</td>
<td>none</td>
<td>I/O</td>
<td>Sets the format of the output channel packet</td>
</tr>
<tr>
<td></td>
<td>PKT_SPCHEFMT</td>
<td>0x16</td>
<td>2</td>
<td>none</td>
<td>I/O</td>
<td>Sets the format of the output speech packet</td>
</tr>
<tr>
<td></td>
<td>PKT_PROTOCOL</td>
<td>0x30</td>
<td>none</td>
<td>varies</td>
<td>I/O</td>
<td>Query for product identification</td>
</tr>
<tr>
<td></td>
<td>PKT_VERSTRING</td>
<td>0x31</td>
<td>none</td>
<td>48</td>
<td>I/O</td>
<td>Query for product version string</td>
</tr>
<tr>
<td></td>
<td>PKT_READY</td>
<td>0x39</td>
<td>none</td>
<td>none</td>
<td>O</td>
<td>Indicates that the device is ready to receive packets</td>
</tr>
<tr>
<td></td>
<td>PKT_HALT</td>
<td>0x35</td>
<td>none</td>
<td>none</td>
<td>I</td>
<td>Sets AMBE-3000F™ Vocoder Chip into lowest power mode</td>
</tr>
</tbody>
</table>
Table 32 Control Packet Fields

PKT_CHANNEL0 field (1 bytes) indicates that subsequent control fields pertain to channel 0.

<table>
<thead>
<tr>
<th>PKT_CHANNEL0 Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x40</td>
</tr>
</tbody>
</table>

Table 33 PKT_CHANNEL(0) Field Format

<table>
<thead>
<tr>
<th>PKT_CHANNEL0 Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x40</td>
</tr>
</tbody>
</table>

Table 34 PKT_CHANNEL(0) Response Field Format

PKT_ECMODE field (3 bytes total) contains the cmode flags to be passed to the encoder to enable/disable advanced features of the encoder. Values set by the PKT_ECMODE field will override the state as set by the corresponding hardware configuration pin.

Note: ECMODE_IN will retain its value until it is changed.

<table>
<thead>
<tr>
<th>PKT_ECMODE Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x05</td>
</tr>
</tbody>
</table>

PKT_ECMODE Response field (1 byte total) indicates encoder cmode flags were received.
Data and Configuration Packets

Table 36 PKT_ECMODE Field Response Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x05</td>
<td>0x00 (anything different indicates error)</td>
</tr>
</tbody>
</table>

PKT_DCMODE field (3 bytes total) contains the cmode flags to be passed to the decoder to enable/disable advanced features of the decoder. Values set by the PKT_DCMODE field will override the state as set by the corresponding hardware configuration pin.

Note: DCMODE_IN will retain its value until it is changed.

Table 37 PKT_DCMODE Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Word</td>
</tr>
<tr>
<td>0x06</td>
<td>Table 15 DCMODE_IN Flags</td>
</tr>
</tbody>
</table>

PKT_DCMODE field (1 byte total) indicates decoder cmode flags were received.

Table 38 PKT_DCMODE Response Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x06</td>
<td>0x00 (anything different indicates error)</td>
</tr>
</tbody>
</table>

PKT_COMPAND field (2 bytes total) Enables/Disables the use of companded data and allows for selection or either a-law or μ-law companding.

Table 39 PKT_COMPAND Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x32</td>
<td>Table 40 PKT_COMPAND Field Options</td>
</tr>
</tbody>
</table>

Options for PKT_COMPAND Field

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select μ-law companding</td>
<td>0 1</td>
</tr>
<tr>
<td>Select a-law companding</td>
<td>1 1</td>
</tr>
<tr>
<td>Compingling Disabled</td>
<td>X 0</td>
</tr>
</tbody>
</table>

Table 40 PKT_COMPAND Field Options
PKT_COMPAND Response field (1 byte total) indicates compand command was received.

<table>
<thead>
<tr>
<th>PKT_COMPAND Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x32</td>
</tr>
</tbody>
</table>

(at anything different indicates error)

Table 41 PKT_COMPAND Response Field Format

PKT_RATET field (2 bytes total) specifies one of the built-in rates. Sets a built-in Rate from Table 119 Rate Index Numbers

<table>
<thead>
<tr>
<th>PKT_RATET Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x09</td>
</tr>
</tbody>
</table>

Table 42 PKT_RATET Field Format

PKT_RATET Response field (1 byte total) indicates receipt of a rate field.

<table>
<thead>
<tr>
<th>PKT_RATET Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x09</td>
</tr>
</tbody>
</table>

(at anything different indicates error)

Table 43 PKT_RATET Response Field Format

The rate of the AMBE-3000F™ Vocoder Chip can be set through hardware pins or control words. After resetting the device, the coding rate can be modified for both the encoder and the decoder by sending a PKT_RATET or PKT_RATEP packet. Table 120 Rate Control Words and Pin Settings shows standard Rate / FEC combinations.

The AMBE-3000F™ Vocoder Chip uses these six words to set the source and FEC coding rates. Table 119 Rate Index Numbers and Table 120 Rate Control Words and Pin Settings lists the predefined values for various source and FEC rates that are built into the AMBE-3000F™ Vocoder Chip. These tables also indicate what rates are compatible with older DVSI vocoder chips such as the AMBE-2000™ Vocoder Chip (using AMBE™+ technology) and the AMBE-1000™ Vocoder Chip (using AMBE™ technology). These are a representation of the most commonly requested rates. Please contact DVSI for additional rate information if the desired rates are not listed.

PKT_RATEP field (13 bytes total) Custom Rate words

If rates other than those indicated in Table 119 Rate Index Numbers and Settings are desired then the PKT_RATEP field must be used to specify a custom rate.

<table>
<thead>
<tr>
<th>PKT_RATEP - Field Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x0A</td>
</tr>
</tbody>
</table>

Table 44 PKT_RATEP Field Format
Example of a PKT_RATEP field with the custom rate of 2800 bps voice and 0 bps FEC

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>RCW 0</th>
<th>RCW 1</th>
<th>RCW 2</th>
<th>RCW 3</th>
<th>RCW 4</th>
<th>RCW 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0A</td>
<td>0x0038</td>
<td>0x0765</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0038</td>
</tr>
</tbody>
</table>

Table 45 PKT_RATEP Field Example

PKT_RATEP Response field (1 byte total) indicated receipt of custom rate words

<table>
<thead>
<tr>
<th>PKT_RATEP Response - Field Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x0A</td>
</tr>
</tbody>
</table>

(anything different indicates error)

Table 46 PKT_RATEP Response Field Format

Vocoder Rate table with Rate - Control Words / Configuration Pin Setting are shown in Section Rate - Control Words / Configuration Pin Settings

PKT_INIT field (2 bytes total) sets the ecmode and dcmode initialization flags for the encoder and the decoder respectively as well as initializes the echo canceller.

When bit 0 of byte 1 is set the encoder is initialized to the following:

- **TONDEDET_ENABLE_FLAG** is on
- Noise suppression is enabled/disabled depending on configuration pin
- Echo canceller and echo suppressor are enabled/disabled depending on configuration pin or bit 2 of the PKT_INIT control field data.
- Companding is enabled/disabled and the companding type is selected depending upon the configuration pins.
- All other bits in ecmode are initialized to zero.

When bit 1 of byte 1 is set the decoder is initialized to the following:

- Companding is enabled/disabled and the companding type is selected depending upon the configuration pins.
- All other bits in dcmode are initialized to zero.

When bits 0 and 1 of byte 1 are both set, the encoder and decoder are both initialized.

When bit 2 of the PKT_INIT field is set to 1 then the echo canceller is initialized.
Options for PKT_INIT Control Field Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder Initialized</td>
<td>0x1</td>
</tr>
<tr>
<td>Decoder Initialized</td>
<td>0x2</td>
</tr>
<tr>
<td>Echo Canceller Initialized</td>
<td>0x4</td>
</tr>
<tr>
<td>Encoder and Decoder Initialized</td>
<td>0x3</td>
</tr>
<tr>
<td>Encoder, Decoder and Echo Canceller Initialized</td>
<td>0x7</td>
</tr>
</tbody>
</table>

Table 48 PKT_INIT Field - Data

PKT_INIT Response field (1 byte total) indicated receipt of encoder and/or decoder initialization.

<table>
<thead>
<tr>
<th>PKT_INIT Response Field - Format</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
<td>1 Byte</td>
</tr>
<tr>
<td>Value</td>
<td>0x0B</td>
</tr>
<tr>
<td>Data</td>
<td>0x00</td>
</tr>
<tr>
<td>(anything different indicates error)</td>
<td></td>
</tr>
</tbody>
</table>

Table 49 PKT_INIT Response Field Format

PKT_LOWPOWER field (2 bytes)

Tells the AMBE-3000F™ Vocoder Chip to enable or disable low-power mode. The AMBE-3000F™ Vocoder Chip will go into a mode, which conserves power, when no voice packets are being processed. By default, low power mode is disabled. After a LOWPOWER packet is received, the chip uses the least power possible by entering standby mode whenever all of the following is true:

- the encoder is not running,
- the decoder is not running,
- a packet is not being received and a packet is not being transmitted.

<table>
<thead>
<tr>
<th>PKT_LOWPOWER Field - Format</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
<td>1 Byte</td>
</tr>
<tr>
<td>Control Field Data</td>
<td>1 Byte</td>
</tr>
<tr>
<td>Value</td>
<td>0x10</td>
</tr>
</tbody>
</table>

Table 50 PKT_LOWPOWER Field Format

Bit 0 of byte 1 enables and disables low power mode.

Options for PKT_LOWPOWER Field

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Power Mode Disabled</td>
<td>0x0</td>
</tr>
<tr>
<td>Low Power Mode Enabled</td>
<td>0x1</td>
</tr>
</tbody>
</table>

Table 51 PKT_LOWPOWER Field Settings

PKT_LOWPOWER Response field (1 byte total) Indicates that the AMBE-3000F™ Vocoder Chip will enter standby whenever it is idle.

<table>
<thead>
<tr>
<th>PKT_LOWPOWER Response Field - Format</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
<td>1 Byte</td>
</tr>
<tr>
<td>Response Field Data</td>
<td>1 Byte</td>
</tr>
</tbody>
</table>
Table 52 PKT_LOWPOWER Response Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>(anything different indicates error)</td>
</tr>
</tbody>
</table>

Table 53 PKT_CODECCFG Field Format

- **#of regs (R)**: contains the number of control registers that will be programmed (where $0 \leq R \leq 10$)
- **reg#**: byte is the value of the control register the following byte of data is to be used for.
- **regdata**: byte is the value that will be placed in the preceding control register number.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x38</td>
<td># of regs (R)</td>
</tr>
</tbody>
</table>

Table 54 PKT_CODECCFG Field Example Data (default values shown)

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x38</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Table 55 PKT_CODECCFG Response Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x38</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Table 56 PKT_CODECSTART Field Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2A</td>
<td>See Table 57 PKT_CODECSTART Field Data</td>
</tr>
</tbody>
</table>

Table 57 PKT_CODECSTART Field Data

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See Table 57 PKT_CODECSTART Field Data</td>
</tr>
</tbody>
</table>

PKT_CODECCFG field (varies bytes) this field contains configuration data that the AMBE-3000™ will send to the codec after it receives a PKT_CODECSTART packet.

PKT_CODECSTART field (1 byte total) Indicates that the AMBE-3000F™ Vocoder Chip sent a configuration packet to the Codec.
Table 57 PKT_CODECSTART Field Data

PKT_CODECSTART field (2 bytes) Indicates that the AMBE-3000F™ Vocoder Chip will switch from packet mode to codec mode.

<table>
<thead>
<tr>
<th>Value</th>
<th>Codec Interface</th>
<th>Pass thru</th>
<th>Skew Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>SPI</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x1</td>
<td>SPI</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0x2</td>
<td>SPI</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x3</td>
<td>SPI</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0x4</td>
<td>McBSP</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x5</td>
<td>McBSP</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x6</td>
<td>McBSP</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x7</td>
<td>McBSP</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Table 58 PKT_CODECSTART Response Field Format

PKT_CODECSTOP field (1 byte) this will switch the AMBE-3000F™ Vocoder Chip from codec mode to packet mode and the codec reset signal is set low. After entering packet mode the AMBE-3000F™ Vocoder Chip will stop outputting packets containing channel data every 20ms.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2A</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>(anything different indicates error)</td>
</tr>
</tbody>
</table>

Table 59 PKT_CODECSTOP Field

PKT_CODECSTOP field (1 byte total) Indicates that the AMBE-3000F™ Vocoder Chip will stop outputting channel data packets.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2B</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 60 PKT_CODECSTOP Response Field Format

PKT_CHANFMT field (3 bytes total) this field will set the format of the channel packets output from the AMBE-3000F™ Vocoder Chip.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2B</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>(anything different indicates error)</td>
</tr>
</tbody>
</table>
Data and Configuration Packets

Table 61 PKT_CHANFMT Field

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ecmode</code> bit 1 bit 0</td>
<td></td>
</tr>
<tr>
<td>Output Channel packets never contain <code>ecmode</code> field</td>
<td>0 0</td>
</tr>
<tr>
<td>Output Channel packets always contain <code>ecmode</code> field</td>
<td>0 1</td>
</tr>
<tr>
<td>Output Channel packets only contain <code>ecmode</code> field when changed</td>
<td>1 0</td>
</tr>
<tr>
<td>Reserved</td>
<td>1 1</td>
</tr>
<tr>
<td><code>dcmode</code> bit 3 bit 2</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>0 0</td>
</tr>
<tr>
<td>Reserved</td>
<td>0 1</td>
</tr>
<tr>
<td>Reserved</td>
<td>1 0</td>
</tr>
<tr>
<td>Reserved</td>
<td>1 1</td>
</tr>
<tr>
<td><code>samples</code> bit 5 bit 4</td>
<td></td>
</tr>
<tr>
<td>Output Channel packets NEVER include the number of samples used in the current frame.</td>
<td>0 0</td>
</tr>
<tr>
<td>Output Channel packets ALWAYS include the number of samples used in the current frame.</td>
<td>0 1</td>
</tr>
<tr>
<td>Output Channel packets include the number of samples used in the current frame ONLY WHEN IT IS DIFFERENT FROM THE LAST FRAME.</td>
<td>1 0</td>
</tr>
<tr>
<td>Output Channel packets include the number of samples used in the current frame ONLY WHEN THE NUMBER OF SAMPLES DOES NOT EQUAL 160.</td>
<td>1 1</td>
</tr>
</tbody>
</table>

NOTE: All Reserved data bits in the PKT_CHANFMT Field (bits 6 through bit 15) must be set to 0 in order to avoid unexpected results.

Table 62 PKT_CHANFMT Data Settings

PKT_CHANFMT Response field (1 byte) this field indicates the output channel packet format has been changed.

<table>
<thead>
<tr>
<th>PKT_CHANFMT Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x15</td>
</tr>
</tbody>
</table>

PKT_SPCHFMT field (3 bytes total) this field will set the format of the **Speech packets output** from the AMBE-3000F™ Vocoder Chip.
PKT_SPCHFMT Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>2 Bytes</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>samples</td>
</tr>
<tr>
<td>0x16</td>
<td>Reserved (bits set to 0)</td>
</tr>
</tbody>
</table>

Table 64 PKT_SPCHFMT Field

NOTE: All Reserved data bits in the PKT_SPCHFMT Field (bits 4 through bit 15) must be set to 0 in order to avoid unexpected results.

Options for PKT_SPCHFMT Field

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcmode</td>
<td>bit 1</td>
</tr>
<tr>
<td>Output Speech packets never contain dcmode field</td>
<td>0</td>
</tr>
<tr>
<td>Output Speech packets always contain dcmode field</td>
<td>0</td>
</tr>
<tr>
<td>Output Speech packets only contain dcmode field when changed</td>
<td>1</td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
</tr>
<tr>
<td>samples</td>
<td>bit 3</td>
</tr>
<tr>
<td>Output Speech packets NEVER include the number of samples contained in the</td>
<td>0</td>
</tr>
<tr>
<td>current speech frame.</td>
<td></td>
</tr>
<tr>
<td>Output Speech packets ALWAYS include the number of samples contained in the</td>
<td>0</td>
</tr>
<tr>
<td>current speech frame.</td>
<td></td>
</tr>
<tr>
<td>Output Speech packets include the number of samples contained in the current speech frame ONLY WHEN IT IS DIFFERENT FROM THE LAST FRAME.</td>
<td>1</td>
</tr>
<tr>
<td>Output Speech packets include the number of samples contained in the current speech frame ONLY WHEN THE NUMBER OF SAMPLES DOES NOT EQUAL 160.</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 65 PKT_SPCHFMT Data Settings

PKT_SPCHFMT Response field (1 byte) this field indicates the output Speech packet format has been changed.

<table>
<thead>
<tr>
<th>PKT_SPCHFMT Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x16</td>
</tr>
</tbody>
</table>

Table 66 PKT_SPCHFMT Response Field

PKT_PRODID field (1 byte total) this field will cause the AMBE-3000F™ Vocoder Chip to respond with a string that contains the product identification.
An easy way to verify the AMBE-3000™ Vocoder Chip is running and ready to process data is to check for the output of the READY packet. However, in order to prove the communication to the AMBE-3000™ Vocoder Chip is operating properly it is best to send a packet to the chip and verify the AMBE-3000™ Vocoder Chip returns the expected value. Two good known packets to send are the PKT_PRODID and PKT_VERSTRING. These two packets have known return values and can easily be compared to validate proper operation.

PKT_PRODID

0x61 0x00 0x01 0x00 0x30

Response Example:

0x61 0x00 0x0E 0x00 0x30 0x41 0x4D 0x42 0x45 0x33 0x30 0x30 0x53 0x41 0x54 0x46 0x00

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x30</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 67 PKT_PRODID Field

PKT_PRODID Response field (11 byte) this field is a null-terminated string that contains the product identification for example “AMBE3000”

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>varies <= 16 Bytes</td>
</tr>
<tr>
<td>0x30</td>
<td>Product ID Data</td>
</tr>
</tbody>
</table>

Table 68 PKT_PRODID Response Field

PKT_VERSTRING field (1 byte total) this field will cause the AMBE-3000™ Vocoder Chip to respond with a string that contains the product version number.

PKT_VERSTRING

0x61 0x00 0x01 0x00 0x31

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x31</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 69 PKT_VERSTRING Field

PKT_VERSTRING Response field (n + 2 bytes) this field is a null-terminated string that contains the product version number for example “V100.E100.XXXX.C106.G514.R007.A0030608.C0020208”

Where the value after the “R” indicates the software release. For more detailed information on software modifications see Section IC Chip Software Errata.
PKT_VERSTRING Response Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>varies (\leq 48) Bytes</td>
</tr>
<tr>
<td>0x31</td>
<td>Version Data</td>
</tr>
</tbody>
</table>

Table 70 PKT_VERSTRING Response Field

PKT_READY Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x39</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 71 PKT_READY Field

PKT_HALT Field - Packet Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x35</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 72 PKT_HALT Field

The PKT_HALT field does not return a Response field.

PKT_RESET Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x33</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 73 PKT_RESET Field

The PKT_RESET field does not return a Response field; however, the AMBE-3000F™ Vocoder Chip does output a PKT_READY packet after every reset (including both hard resets and packet resets). The PKT_READY packet can therefore be viewed as a response packet to the packet containing a PKT_RESET field.

PKT_RESETSOFTCFG field (7 bytes total) this field will cause the AMBE-3000F™ Vocoder Chip to be reset. As a result, the AMBE-3000F™ Vocoder Chip will lose all prior configuration settings and reset itself to the default power up state. This is similar to PKT_RESET; however the hardware configuration pins can be overridden by the settings specified by the packet. The PKT_RESETSOFTCFG packet contains 6 additional bytes of data which specify the settings for the 24 configuration pins. CFG0 – CFG2 specify the software settings for each of the 24 configuration pins. MASK0-MASK2 specify whether the
hardware setting or the software setting for each pin is used. If all the MASK bits are 0, then no software configuration is used and the packet behaves the same as a PKT_RESET packet (all the configuration settings come from the hardware pins at reset). If all the MASK bits are 1, then all the configuration pins are ignored upon the resulting reset and replaced with the configuration specified by CFG0 – CFG2. It is possible to individually mask the bits and select some configuration to come from hardware pins and some configuration to come from CFG0-CFG2.

<table>
<thead>
<tr>
<th>CFG Byte</th>
<th>Bit</th>
<th>Configuration Description</th>
<th>Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TQFP</td>
<td>BGA</td>
</tr>
<tr>
<td>CFG0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (LSB)</td>
<td>IF_SELECT0</td>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td>1</td>
<td>IF_SELECT1</td>
<td>3</td>
<td>C3</td>
</tr>
<tr>
<td>2</td>
<td>IF_SELECT2</td>
<td>4</td>
<td>B1</td>
</tr>
<tr>
<td>3</td>
<td>DTX_ENABLE</td>
<td>5</td>
<td>C1</td>
</tr>
<tr>
<td>4</td>
<td>SK_ENABLE</td>
<td>6</td>
<td>D3</td>
</tr>
<tr>
<td>5</td>
<td>NS_ENABLE</td>
<td>7</td>
<td>D2</td>
</tr>
<tr>
<td>6</td>
<td>CP_ENABLE</td>
<td>8</td>
<td>D1</td>
</tr>
<tr>
<td>7 (MSB)</td>
<td>CP_SELECT</td>
<td>9</td>
<td>F5</td>
</tr>
</tbody>
</table>

Table 74 Software Override of Hardware Configuration Pins

For more information regarding configuration pins refer to Table 2 Hardware Configuration Settings

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFG0</td>
</tr>
<tr>
<td>1 Byte</td>
<td>1 byte</td>
</tr>
<tr>
<td>0x34</td>
<td></td>
</tr>
</tbody>
</table>

Table 75 PKT_RESETSOFTCFG Field

The PKT_RESETSOFTCFG field does not return a Response field; however, the AMBE-3000F™ Vocoder Chip does output a PKT_READY packet after every reset (including both hard resets and packet resets). The PKT_READY packet can therefore be viewed as a response packet to the packet containing a PKT_RESETSOFTCFG field.
PKT_GETCFG field (1 byte) this field will cause the AMBE-3000F™ Vocoder Chip to output a response field which contains the 3 bytes reflecting the current status of the configuration registers. Note that this does not cause the configuration pins to be re-read, it merely reports back what the state of the pins were upon power-up or reset.

![Table 76 PKT_GETCFG Field](image1)

PKT_GETCFG Response Field – Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x36</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

![Table 77 PKT_GETCFG Response Field](image2)

PKT_READCFG field (1 byte total) this field will cause the AMBE-3000F™ Vocoder Chip to output a response field which contains the 3 bytes which are read from the configuration pins after the PKT_READCFG field is received. Note that if the signal levels on the configuration pins have changed since their reset levels, then CFG0-CFG2 reported by the response packet will reflect that change. Note that although this packet causes the configuration pins to be re-read and sent back in a response packet, the AMBE-3000F™ Vocoder Chip does not change its configuration as a result of receiving this packet.

![Table 78 PKT_READCFG Field](image3)

PKT_READCFG Response Field – Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Fields Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>CFG0</td>
</tr>
<tr>
<td>1 Byte</td>
<td>CFG1</td>
</tr>
<tr>
<td>1 Byte</td>
<td>CFG2</td>
</tr>
<tr>
<td>0x36</td>
<td></td>
</tr>
</tbody>
</table>

![Table 79 PKT_READCFG Response Field](image4)

PKT_PARITYMODE field (2 bytes total) This field can be used to enable or disable parity fields at the end of every packet.

![Table 80 PKT_PARITYMODE Field Format](image5)

PKT_PARITYMODE Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x3F</td>
<td>mode</td>
</tr>
</tbody>
</table>
If mode is 0 then parity fields will be disabled for all output packets beginning with the response to this packet. The AMBE-3000F™ Vocoder Chip will not require a valid parity byte for future received packets.

If mode is 1 then parity fields will be enabled for all output packets beginning with the response to this packet. The AMBE-3000F™ Vocoder Chip will reject all future received packets that do not have a valid parity field.

All other values for mode are reserved and should not be used.

PKT_PARITYMODE Response field (2 bytes) this field indicates that the PKT_PARITYMODE field in the corresponding control packet was received without error.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x3F</td>
<td>0x00</td>
</tr>
</tbody>
</table>

(anthing different indicates error)

Table 81 PKT_PARITYMODE Response Field

PKT_WRITEI2C field (n bytes plus 2) this field writes to an I²C device such as a codec.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Fields Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x44</td>
<td>n</td>
</tr>
</tbody>
</table>

Table 82 PKT_WRITEI2C Field Format

PKT_WRITEI2C Response field (2 byte) this field indicates that the PKT_WRITEI2C field in the corresponding control data was received without error.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x44</td>
<td>0x00</td>
</tr>
</tbody>
</table>

(anthing different indicates error)

Table 83 PKT_WRITEI2C Response Field

PKT_CLRCODECRESET field (1 byte total) this field sets the codec reset signal to low.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>0 Byte</td>
</tr>
<tr>
<td>0x46</td>
<td>No Data Needed</td>
</tr>
</tbody>
</table>

Table 84 PKT_CLRCODECRESET Field Format

PKT_CLRCODECRESET Response field (2 bytes) this field indicates that the PKT_CLRCODECRESET packet was received without error.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
</tbody>
</table>
Table 85 PKT_CLRCODECRESET Response Field

<table>
<thead>
<tr>
<th>0x46</th>
<th>0x00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(anything different indicates error)</td>
</tr>
</tbody>
</table>

PKT_SETCODECRESET field (1 byte total) This field sets the codec reset signal to low.

<table>
<thead>
<tr>
<th>PKT_SETCODECRESET Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x47</td>
</tr>
</tbody>
</table>

Table 86 PKT_SETCODECRESET Field Format

PKT_SETCODECRESET Response field (2 bytes) this field indicates that the PKT_SETCODECRESET packet was received without error.

<table>
<thead>
<tr>
<th>PKT_SETCODECRESET Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x47</td>
</tr>
</tbody>
</table>

Table 87 PKT_SETCODECRESET Response Field

PKT_DISCARDCODEC field (3 bytes total) This field specifies the number of codec samples that are discarded when the codec interface is started.
Default is 0. 128 is recommended for the Texas Instrument AIC14 codec.

<table>
<thead>
<tr>
<th>PKT_DISCARDCODEC Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x48</td>
</tr>
</tbody>
</table>

Table 88 PKT_DISCARDCODEC Field Format

PKT_DISCARDCODEC Response field (2 bytes) this field indicates that the PKT_DISCARDCODEC packet was received without error.

<table>
<thead>
<tr>
<th>PKT_DISCARDCODEC Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x48</td>
</tr>
</tbody>
</table>

Table 89 PKT_DISCARDCODEC Response Field

PKT_DELAYNUS field (3 bytes total) This field specifies the amount of delay in microseconds prior to processing the next control field.

<table>
<thead>
<tr>
<th>PKT_DELAYNUS Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x49</td>
</tr>
</tbody>
</table>
Table 90 PKT_DELAYNUS Field Format

PKT_DELAYNUS Response field (2 bytes) this field indicates that the PKT_DELAYNUS packet was received without error.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x49</td>
<td>0x00 (anything different indicates error)</td>
</tr>
</tbody>
</table>

Table 91 PKT_DELAYNUS Response Field

PKT_DELAYNNS field (3 bytes total) This field specifies the amount of delay in nanoseconds prior to processing the next control field.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>2 Bytes</td>
</tr>
<tr>
<td>0x4A</td>
<td>Number of nanoseconds delay</td>
</tr>
</tbody>
</table>

Table 92 PKT_DELAYNUS Field Format

PKT_DELAYNNS Response field (1 byte) this field indicates that the PKT_DELAYNNS packet was received without error.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Response Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x4A</td>
<td>0x00 (anything different indicates error)</td>
</tr>
</tbody>
</table>

Table 93 PKT_DELAYNNS Response Field

PKT_RTSTHRESH field (5 bytes total) This field can be used to set the number of threshold high and threshold low free space bytes in the receive buffer.

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Fields Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>2 Bytes</td>
</tr>
<tr>
<td>0x4E</td>
<td>2 Bytes</td>
</tr>
</tbody>
</table>

Table 94 PKT_RTSTHRESH Field Format

The Ready-To-Send (RTSn) pin is output by the AMBE-3000F™ Vocoder Chip. The output is active low. The signal is used by the AMBE-3000F™ Vocoder Chip to control the flow of packet data to the AMBE-3000F™ Vocoder Chip. The AMBE-3000F™ Vocoder Chip has a receive buffer where incoming packets are stored until they have been processed. When RTSn is low, the AMBE-3000F™ Vocoder Chip indicates that it is ready to receive packet data. When RTSn is high, the AMBE-3000F™ Vocoder Chip is not ready to receive packet data. The AMBE-3000F™ Vocoder Chip sets RTSn high if there are less than thresh_hi bytes of free space in the receive buffer. The AMBE-3000F™ Vocoder Chip sets RTSn low if there are more than thresh_lo bytes of free space in the receive buffer. By default, after reset thresh_hi is set to 20 and thresh_lo is set to 40. These thresholds can be changed by sending a PKT_RTSTHRESH field as part of a control packet after reset. The
thresholds may need to be set to higher values if the device connected to RTSn does not stop sending packet data quickly enough after RTSn goes high.

The RTSn signal follows the conventions commonly used for RS-232 flow control. If the MCBSP or the parallel port is selected for the packet interface, rather than the UART, then the RTSn signal is still generated. The RTSn signal can also be used for flow control if the McBSP or the PPT interface is used.

Format of the PKT_RTSTHRESH field is as follows. 5 bytes total. 1 byte code is 0x4e followed by 2 bytes for thresh_hi two bytes for thresh_lo

PKT_RTSTHRESH Response field (2 bytes) this field indicates that the PKT_RTSTHRESH field in the corresponding control packet was received without error.

<table>
<thead>
<tr>
<th>PKT_RTSTHRESH Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x4E</td>
</tr>
</tbody>
</table>

(anything different indicates error)

Table 95 PKT_RTSTHRESH Response Field

Note: “PKT_GAIN” and “PKT_GAIN Response” are ONLY effective for 16 bit Linear Samples when in Packet Mode. PKT_GAIN has no effect in Codec Mode.

PKT_GAIN field (3 bytes total) This field can be used to set the input gain and output gain to anywhere between +90 and -90 dB. The default input gain and output gain are each 0 dB.

<table>
<thead>
<tr>
<th>PKT_GAIN Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x4B</td>
</tr>
</tbody>
</table>

Table 96 PKT_GAIN Field Format

If the input gain is < 0 dB then the input speech samples are attenuated prior to encoding.
If the input gain is > 0 dB then the input speech samples are amplified prior to encoding.
If the output gain is < 0 dB then the output speech samples are attenuated after decoding.
If the output gain is > 0 dB then the output speech samples are amplified after decoding.

It is recommended that the input and output gain are both 0 dB. Different values can be used for testing purposes.

PKT_GAIN Response field (2 bytes total) this field indicates that the PKT_GAIN field in the corresponding control packet was received without error.

<table>
<thead>
<tr>
<th>PKT_GAIN Response Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x4B</td>
</tr>
</tbody>
</table>

(anything different indicates error)

Table 97 PKT_GAIN Response Field
6.7 Input Speech Packet Format (Packet Type 0x02)

A speech packet uses the general packet format where the PACKET TYPE is equal to 0x02. For every speech packet input (packet type 0x02) to the AMBE-3000F™ Vocoder chip, the chip will output channel packet (packet type 0x01). Speech packets are used only when the AMBE-3000F™ Vocoder Chip is operating in packet mode.

6.7.1 Speech Packet Fields

The speech packet supports the following packet fields:

<table>
<thead>
<tr>
<th>Speech Packet - Fields</th>
<th>Field Identifier</th>
<th>Data Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKT_CHANNEL0</td>
<td>0x40</td>
<td>1 byte</td>
<td>The vocoder for subsequent fields</td>
</tr>
<tr>
<td>SPEECHD</td>
<td>0x00</td>
<td>Variable bytes</td>
<td>The speech data to be encoded for current vocoder</td>
</tr>
<tr>
<td>CMODE</td>
<td>0x02</td>
<td>2 bytes</td>
<td>cmode flags for current vocoder's encoder</td>
</tr>
<tr>
<td>PKT_TONEXMT</td>
<td>0x50</td>
<td>3 bytes</td>
<td>Force current encoder to transmit tone frames</td>
</tr>
</tbody>
</table>

Table 98 Speech Packet Fields

PKT_CHANNEL_ID field (2 bytes) indicates the vocoder the control is intended for. It is the same as described in the Table 33 PKT_CHANNEL(0) Field Format.

A SPEECHD field (variable number of bytes) contains the speech data to be encoded for the current channel or the decoded speech data for the current channel. When using 16 bit linear PCM Raw Speech data to be input to the encoder or output from the decoder there will be 16 bits per sample, this means at 160 samples there are 320 bytes of data. When using companded data (a-law or µ-law there are 8 bits of data per sample, this results in 160 bytes of data in 160 samples. The speech is denoted as Speech[0] thru Speech[2*(samples)-1].Speech[0] is the MS byte of the first sample. Speech[1] is the LS byte of the first sample. Speech[2*(samples)-2] is the MS byte of the last sample. Speech[2*(samples)-1] is the LS byte of the last sample.

<table>
<thead>
<tr>
<th>SPEECHD Field - Packet Format</th>
<th>Field Identifier</th>
<th>Number of Samples</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
<td>Variable Number of Samples</td>
<td></td>
</tr>
</tbody>
</table>

Table 99 SPEECHD Field Format

CMODE fields (3 bytes total) may be used to change the mode of the encoder on a frame-by-frame basis. The CMODE field will enable/disable advanced features of the encoder when sent as part of a speech packet.

CMODE will overwrite any values set by the PKT_ECMODE field as well as, the state as set by the corresponding hardware configuration pin. In order not to inadvertently turn off or on features that were originally set by ECMODE_IN or set via hardware configuration pins to be sure that CMODE is or’d with the correct value of the desired ECMODE_IN. Except for Tone Generation, typically, once these values are set they do not change. So it is not necessary to send CMODE fields on a frame-by-frame basis.

For example, to enable tone detection, DTX and noise suppression, CMODE data value would be 0x1840. In order to generate a tone and retaining all of the other settings then CMODE data value would be 0x5840.
CMODE Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Word</td>
</tr>
<tr>
<td>0x02</td>
<td>See Table 102 CMODE Parameters Table</td>
</tr>
</tbody>
</table>

Table 100 CMODE Field Format

CMODE Field - Parameters

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Parameter</th>
<th>Description</th>
<th>CMODE Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>R</td>
<td>ALL RESERVED BITS SHOULD BE SET TO ZERO</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>TS_E</td>
<td>Noise Suppression Enable</td>
<td>NS_Enable</td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>Compand Select</td>
<td>CP_Select</td>
</tr>
<tr>
<td>12</td>
<td>TD_E</td>
<td>Compand_Enable</td>
<td>CP_Enable</td>
</tr>
<tr>
<td>11</td>
<td>DTX_E</td>
<td>Discontinous Transmit Enable</td>
<td>DTX_ENABLE</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>Tone Detection Enable</td>
<td>TD_ENABLE</td>
</tr>
</tbody>
</table>

Table 101 CMODE Parameters Table

CMODE Field – Parameters Key

PKT_TONEXMT (0x50) is followed by 3 bytes (idx, amp, dur).

The field specifies that the encoder produce a tone.

PKT_TONEXMT Field – Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Bytes</td>
<td>Idx (1 byte)</td>
</tr>
<tr>
<td>1 Byte</td>
<td>amp (1 byte)</td>
</tr>
<tr>
<td>0x50</td>
<td>dur (1 byte)</td>
</tr>
<tr>
<td>0x50</td>
<td>See Table 104 TONE Index Values</td>
</tr>
<tr>
<td></td>
<td>See Table 105 TONE AMPLITUDE Values</td>
</tr>
<tr>
<td></td>
<td>0x0 to 0xFF</td>
</tr>
</tbody>
</table>

Table 103 PKT_TONEXMT Field Format

Idx specifies the index of the tone. See Table 104 TONE Index Values for detailed information. Refer to the tone table for idx. Amp specifies the level of the tone in dbm0 (-90 <= amp <= +3). See Table 105 TONE AMPLITUDE Values for detailed information regarding the tone amplitude values table. Dur specifies the duration of the tone in 20 ms frames. The value set in dur will indicate the number of 20ms frames to make the tone last. As a special case, the value of dur=255 (0xFF) requests that the encoder output a tone indefinitely, or until a new PKT_TONEXMT field with a duration of less than 255 is received.

For packet mode, it can be used for input speech packets. For codec mode, it can be used for input channel packets.
TONE_IDX (Field ID 0x00)
Can specify the index of a desired tone or identify the index of a detected or received tone.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>TONE Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency 1 (Hz)</td>
<td>Frequency 2 (Hz)</td>
</tr>
<tr>
<td>Single Tones (The single tones span from 156.25 Hz to 3812.5 Hz in 31.25 Hz Increments)</td>
<td>Single tone</td>
<td>156.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>187.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>218.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3812.5</td>
</tr>
<tr>
<td>DTMF Tones</td>
<td>1</td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1336</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1336</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1336</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1336</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>1477</td>
</tr>
</tbody>
</table>

Call Progress
Dial Tone	440	350	0xA0
Ring Tone	480	440	0xA1
Busy Tone	620	480	0xA2
Inactive	N/A	N/A	0xff
Invalid			

Table 104 TONE Index Values

TONE Amplitude Values (Field 0x06)
Can specify the amplitude of a desired tone or identify the index of a detected or received tone.
The DTMF Amplitude runs from 3 to –90 dBm0. This value is a signed byte (example: 0x03 = 3, 0x00 = 0, 0xC4 = -60).

<table>
<thead>
<tr>
<th>Description</th>
<th>TONE Amplitude Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Amplitude Level = +3</td>
<td>0x03</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Min. Amplitude Level = -90</td>
<td>0xA6</td>
</tr>
</tbody>
</table>

Table 105 TONE AMPLITUDE Values
6.8 Output Speech Packets Format (Packet Type 0x02)

A speech packet (packet type 0x02) is output from the AMBE-3000F™ Vocoder chip, whenever the chip receives an input channel packet (packet type 0x01). The format of the output speech packet can be configured using PKT_SPCHFMT control field see Table 64 PKT_SPCHFMT Field.

6.9 Input Channel Packet Format (Packet Type 0x01)

A channel packet uses the format as shown in Table 28 General Packet Format WITHOUT Parity Field where the PACKET TYPE is equal to 0x01. For every channel packet input (packet type 0x01) to the AMBE-3000F™ Vocoder chip, the chip will output speech packet (packet type 0x02).

6.9.1 Channel Packet Fields

The channel packet supports the following packet fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Identifier</th>
<th>Field Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKT_CHANNEL0</td>
<td>0x40</td>
<td>2 bytes</td>
<td>The vocoder for subsequent fields</td>
</tr>
<tr>
<td>CHAND</td>
<td>0x01</td>
<td>Variable bytes</td>
<td>Compressed speech data to be decoded for current vocoder</td>
</tr>
<tr>
<td>CHAND4</td>
<td>0x17</td>
<td>Variable bytes</td>
<td>Compressed speech data with four bit soft decision error correction enabled to be decoded for current vocoder</td>
</tr>
<tr>
<td>SAMPLES</td>
<td>0x30</td>
<td>2 bytes</td>
<td>Number of samples to generate for current decoder frame</td>
</tr>
<tr>
<td>CMODE</td>
<td>0x02</td>
<td>3 bytes</td>
<td>CMODE flags for current vocoder’s decoder</td>
</tr>
<tr>
<td>PKT_TONEGEN</td>
<td>0x51</td>
<td>3 bytes</td>
<td>Force current vocoder’s decoder to generate tone frame</td>
</tr>
</tbody>
</table>

Table 106 Channel Packet Fields

PKT_CHANNEL0 field (2 bytes) indicates the vocoder the control is intended for. It is the same as described in the Table 33 PKT_CHANNEL(0) Field Format

CHAND (variable number of bytes) channel bits to be decoded, packet 8 bits per byte. Compressed data bits from the encoder or to the decoder (packed 8 bits per byte). The data is denoted by Chandra[0] to Chandra[(Bits-1)/8]. Chandra[0] contains the bits which are most sensitive to bit errors. Chandra[(Bits-1)/8] contain the bits which are least sensitive to bit errors. 2 thru 1+(Bits+7)/8 bytes

<table>
<thead>
<tr>
<th>CHAND Field - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x01</td>
</tr>
</tbody>
</table>

Table 107 CHAND Field - Format

CHAND4 (variable number of bytes) channel bits to be decoded, with soft decision error correction enabled. Compressed data bits from the encoder or to the decoder (packed 2 bits per byte). The data is denoted by Chandra[0] to Chandra[(bits-1)/2].
CHAND4 Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Number of Bits</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
<td>Variable Number of Channel Data Bits</td>
</tr>
<tr>
<td>0x17</td>
<td>40 ≤ {bits} ≤ 192</td>
<td>chand[0] – chand[(bits-1)/2]</td>
</tr>
</tbody>
</table>

Table 108 CHAND4 Field - Format

SAMPLES Field - Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
<tr>
<td>0x03</td>
<td>156 ≤ {number of samples} ≤ 164</td>
</tr>
</tbody>
</table>

Table 109 SAMPLES Field - Format

CMODE fields (3 bytes total) may be used to change the mode of the decoder on a frame-by-frame basis. The CMODE field will enable/disable advanced features of the decoder when sent as part of a channel packet.

CMODE will overwrite any values set by the PKT_DCMODE field as well as, the state as set by the corresponding hardware configuration pin. In order not to inadvertently turn off or on features that were originally set by DCMODE_IN or set via hardware configuration pins to be sure that CMODE is or’d with the correct value of the desired DCMODE_IN. Except for Tone Synthesis Enable, once these values are set they typically do not change. So it is not necessary to send CMODE fields on a frame-by-frame basis.

For example, to enable both LOST_FRAME and CNI_FRAME CMODE data value would be 0xXXXC.

PKT_TONEGEN (0x51) is followed by 3 bytes (idx, amp, dur).

The field specifies that the decoder synthesize a tone (the channel data is ignored).

PKT_TONEGEN Field – Format

<table>
<thead>
<tr>
<th>Field Identifier</th>
<th>Control Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>3 Bytes</td>
</tr>
<tr>
<td>0x51</td>
<td>Idx (1 byte)</td>
</tr>
<tr>
<td></td>
<td>amp (1byte)</td>
</tr>
<tr>
<td></td>
<td>dur (1byte)</td>
</tr>
<tr>
<td></td>
<td>See Table 104 TONE</td>
</tr>
<tr>
<td></td>
<td>Index Values</td>
</tr>
<tr>
<td></td>
<td>See Table 105 TONE</td>
</tr>
<tr>
<td></td>
<td>AMPLITUDE Values</td>
</tr>
<tr>
<td></td>
<td>0x0 to 0xFF</td>
</tr>
</tbody>
</table>

Table 110 PKT_TONEGEN Field Format
Idx specifies the index of the tone. Amp specifies the level of the tone in dbm0 (-90 <= amp <= +3). Dur specifies the duration of the tone in 20 ms frames. The value set in dur will indicate the number of 20ms frames to make the tone last. As a special case, the value of dur=255 (0xFF) requests that the encoder output a tone indefinitely, or until a new PKT_TONEGEN field with a duration of less than 255 is received.

For packet mode it can be used for input channel packets.
For codec mode, it can be used for input channel packets

6.10 Output Channel Packet Format (Packet Type 0x01)

A channel packet (packet type 0x01) is output from the AMBE-3000F™ Vocoder chip, whenever the chip receives an input speech packet (packet type 0x02). The format of the output channel packet can be configured using PKT_CHANFMT control field see Table 61 PKT_CHANFMT Field.

PKT_TONEDET (0x52) is followed by 2 bytes (idx, amp).
It occurs in output channel packets only if enabled using a preceding PKT_TONEMODE field. The packet indicates the index and the amplitude of a tone detected by the encoder. PKT_TONEMODE field is used to specify when PKT_TONEDET is output. The choices are “never”, “always”, “only when the index changes”, or “only when the index is a valid tone”.

Note that by default the tone mode is “never” meaning that PKT_TONEDET will not occur in the output channel packets. If the mode is set to “always” then every channel packet output will contain this field. Packets for which there was no tone detected will contain idx=0xFF (255) and amp=0xA6 (-90).

<table>
<thead>
<tr>
<th>PKT_TONEDET Field – Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x52</td>
</tr>
</tbody>
</table>

PKT_TONERCV (0x53) is followed by 2 bytes (idx, amp). PKT_TONEMODE field is used to specify when PKT_TONERCV is output. The choices are “never”, “always”, “only when the index changes”, or “only when the index is a valid tone”.

<table>
<thead>
<tr>
<th>PKT_TONERCV Field – Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x53</td>
</tr>
</tbody>
</table>

Note that by default the tone mode is “never” meaning that PKT_TONERCV will not occur in the output packets. If the mode is set to “always” then every channel packet (codec mode) / speech packet (packet mode) output will contain this field. Packets for which there was no tone received will contain idx=0xFF (255) and amp=0xA6 (-90).
For packet mode, it occurs in output speech packets only if enabled using a preceding PKT_TONEMODE field. The packet indicates the index and the amplitude of a tone received by the decoder.

For codec mode, it occurs in output channel packets only if enabled using a preceding PKT_TONEMODE field.

PKT_TONEMODE (0x54) is followed by a single byte named “mode”.

This is a control packet. The response field will have PKT_TONEMODE followed by 0. The mode byte specifies the tone reporting mode. This field determines when/if PKT_TONEDET and PKT_TONERCV fields are output. By default, PKT_TONEDET and PKT_TONERCV fields are not output.

Bits 1 and 0 determine when PKT_TONEDET is output.

Bits 5 and 4 determine when PKT_TONERCV is output.

The remaining bits in mode are reserved and should be input as “0”.

<table>
<thead>
<tr>
<th>PKT_TONEMODE Field – Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Identifier</td>
</tr>
<tr>
<td>1 Byte</td>
</tr>
<tr>
<td>0x54</td>
</tr>
</tbody>
</table>

Table 113 PKT_TONEMODE Field Format

<table>
<thead>
<tr>
<th>Values for PKT_TONEMODE Control Field “Mode”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>encoder tone detection status is never reported by PKT_TONEDET</td>
</tr>
<tr>
<td>encoder tone detection status is always reported by PKT_TONEDET</td>
</tr>
<tr>
<td>encoder tone detection status is only reported by PKT_TONEDET when the tone idx changes</td>
</tr>
<tr>
<td>encoder tone detection status is only reported by PKT_TONEDET when the tone idx indicates a valid tone</td>
</tr>
<tr>
<td>decoder tone reception status is never reported by PKT_TONERCV</td>
</tr>
<tr>
<td>decoder tone reception status is always reported by PKT_TONERCV</td>
</tr>
<tr>
<td>decoder tone reception status is only reported by PKT_TONERCV when the tone idx changes</td>
</tr>
<tr>
<td>decoder tone reception status is only reported by PKT_TONERCV when the tone idx indicates a valid</td>
</tr>
</tbody>
</table>

Table 114 PKT_TONEMODE Field Values for “Mode”

Note that R = reserved for future use and should be set to 0

Note that X = don’t care.

6.11 Example Packets

6.11.1 Speech Packet Example 1

The simplest way to operate the AMBE-3000F™ Vocoder Chip in packet mode is to send it a packet and then wait for a response packet. But using this method, the vocoder is idle during the time when a packet is being received by the
AMBE-3000F™ Vocoder Chip and during the time in which the AMBE-3000F™ Vocoder Chip is transmitting the response packet.

Following is an example speech packet (hexadecimal) for input to the AMBE-3000F™ Vocoder Chip:

<table>
<thead>
<tr>
<th>Header</th>
<th>CHANNEL0 Field</th>
<th>SPEECHD Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShortByte</td>
<td>Length</td>
<td>Type</td>
</tr>
<tr>
<td>61</td>
<td>0143</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 115 Speech Packet Example 1

The first byte (0x61) is the packet header byte. The next two bytes (0x0143) specify the total length of the packet fields is 323 bytes. Note that the total packet length including the header, length, and type is 327 bytes. The next byte (0x40) specifies that the packet type is a speech packet. The next byte (0x02) is the field identifier for a ChannelID field. The next byte (0x00) is a SPEECHD field identifier and the following byte (0xA0) tells the AMBE-3000F™ Vocoder Chip that the SPEECHD Data field contains 160 speech samples, occupying 320 bytes. The final 320 bytes contain the speech samples. For this particular example the speech samples increment from 0 to 159. Note that the MS byte of each sample is transmitted/received prior to the LS byte of each sample. This convention is used whenever a 16-bit number is contained in a packet.

Also note that the default vocoder number, if no VOCODERID fields occur in the packet, is vocoder 0. So for this example, since vocoder 0 is specified in the VOCODERID field, the VOCODERID field could have been omitted.

6.11.2 Speech Packet Example 2

The following packet is another example of speech input:

(Subject to Change)
Data and Configuration Packets

Speech Packet

<table>
<thead>
<tr>
<th>Header</th>
<th>VOCODER ID Field</th>
<th>SPEECHD Field</th>
<th>CMODE Field</th>
<th>PKT_TONEXMT Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartByte</td>
<td>Length</td>
<td>Type</td>
<td>SPEECHD Field identifier</td>
<td>SPEECHD No. of Samples</td>
</tr>
<tr>
<td>06</td>
<td>014A</td>
<td>02</td>
<td>40</td>
<td>00</td>
</tr>
</tbody>
</table>

Table 116 Speech Packet Example 2
This is similar to the prior example except that a CMODE field and a PKT_TONEXMT field were added to the end of the packet. The packet indicates that the speech samples will be passed to the encoder for channel 0. The length field changed to 0x0149 because the packet length increased by 6 bytes. For the new bytes at the end of the packet (0x02) is the CMODE field identifier. The following two bytes (0x0000) specifies that the encoder cmode flags should be set to 0x0000. The next byte (0x50) is a PKT_TONEXMT field identifier. The next two bytes (0x03 and 0x00) specify tone index of 3 and tone amplitude of 0 dBm0.

6.11.3 Channel Packet Example 1

Following is an example channel packet (hexadecimal) for input to the AMBE-3000F™ Vocoder Chip:

<table>
<thead>
<tr>
<th>Channel Packet</th>
<th>CHAND Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartByte</td>
<td>Length</td>
</tr>
<tr>
<td>61</td>
<td>000C</td>
</tr>
</tbody>
</table>

Table 117 Channel Packet Example 1

The first byte (0x61) is the packet header byte. The next two bytes (0x000C) specify that the length of the packet (excluding the header, length, and type bytes) is 12 bytes. The next byte (0x01) specifies that the packet type is a channel packet. The next byte (0x01) is the field identifier for a CHAND field. The next byte (0x50) specifies that 80 bits of channel data follow. The bits are packed 8 bits per byte such that the 80 bits are contained in the 10 bytes that follow. The final 10 bytes contain the channel data. The bits are output with the most significant (and most sensitive to bit-errors) bits in the first byte and the least significant (and least sensitive to bit-errors) bits in the last byte. For bit-rates that are not an even multiple of 400 bps, the MSBs of the last byte are used to hold the channel data, and the LSBs will be padded with zeros.

Note that in this example, the packet contains no VOCODERID field, and therefore channel 0 is assumed.
6.11.4 Channel Packet Example 2

Following is another example of a channel packet for input to the AMBE-3000F™ Vocoder Chip:

<table>
<thead>
<tr>
<th>Channel Packet</th>
<th>Header</th>
<th>PKT_CHANNEL0 Field</th>
<th>CHAND Field</th>
<th>SAMPLES Field</th>
<th>CMODE Field</th>
<th>PKT_TONEGEN Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartByte</td>
<td>Length</td>
<td>Type</td>
<td>PKT_CHANNEL0 Field Identifier</td>
<td>CHAND Field Identifier</td>
<td>CHAND Number of Bits</td>
<td>CHAND Data</td>
</tr>
<tr>
<td>61</td>
<td>000F</td>
<td>01</td>
<td>40</td>
<td>01</td>
<td>38</td>
<td>0011223 3445566</td>
</tr>
</tbody>
</table>

Table 118 Channel Packet Example 2

The first byte (0x61) is the packet header byte. The next two bytes (0x000F), specify that the length of the packet (excluding the header, length, and type bytes) is 15 bytes. The next byte (0x01) specifies that the packet type is a channel packet. The next byte (0x40), is a ChannelID field identifier. The next byte (0x01) is a CHAND specifier and the following byte (0x38) specifies that 56 bits (7 bytes) of channel data follow. The next 7 bytes contain the channel data to be decoded by the decoder. The next byte (0x03), is a field identifier for a SAMPLES field. The next byte (0xA1), specifies that the decoder will output 161 samples rather than the normal 160 samples when it produces the resulting speech packet. The next byte (0x02), is the field identifier for a CMODE field. The final 2 bytes (0x0000), are used to control the decoder mode.
7 Appendices

7.1 Algorithmic and Processing Delays

The total delay due to the coding/decoding algorithm is = 62 ms

<table>
<thead>
<tr>
<th>Encoder Time (58 ms)</th>
<th>Transmit</th>
<th>Channel</th>
<th>Receive</th>
<th>Decoder Time (up to 35 ms)</th>
<th>Begin Speech out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm + Processing delay</td>
<td>Transmission + Channel + Receive delay</td>
<td>Scheduling + Algorithm + Processing delay</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoder Algorithmic delay. (This delay includes the delay associated with collecting enough PCM samples for the encoder algorithm to begin processing.)

- **Encoder Processing delay.**
 - 52 ms

- **Packet read delay.**
 - ~ Channel transmission delay.

- **Packet write delay.**
 - ~

- **(user defined)**

- **Decoder scheduling delay.**
 - 0 – 20 ms

Decoder Algorithmic delay. (Time to actual decode.)

- 10 ms

- **Decoder Processing delay.**
 - 5 ms

First speech sample ready.

Note: The total algorithmic delay for the encoder and decoder combined is 62 msec. The breakdown in this chart is somewhat arbitrary but it represents a close estimate.
7.2 Vocoder Rate by Index Number

AMBE-1000™ Rates

<table>
<thead>
<tr>
<th>Rate Index #</th>
<th>Total Rate</th>
<th>Speech Rate</th>
<th>FEC Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2400</td>
<td>2400</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3600</td>
<td>3600</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4800</td>
<td>3600</td>
<td>1200</td>
</tr>
<tr>
<td>3</td>
<td>4800</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9600</td>
<td>9600</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>2350</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>9600</td>
<td>4850</td>
<td>4750</td>
</tr>
<tr>
<td>7</td>
<td>4800</td>
<td>4550</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>4800</td>
<td>3100</td>
<td>1700</td>
</tr>
<tr>
<td>9</td>
<td>7200</td>
<td>4400</td>
<td>2800</td>
</tr>
<tr>
<td>10</td>
<td>6400</td>
<td>4150</td>
<td>2250</td>
</tr>
<tr>
<td>11</td>
<td>3600</td>
<td>3350</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>8000</td>
<td>7750</td>
<td>250</td>
</tr>
<tr>
<td>13</td>
<td>8000</td>
<td>4650</td>
<td>3350</td>
</tr>
<tr>
<td>14</td>
<td>4000</td>
<td>3750</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>4000</td>
<td>4000</td>
<td>0</td>
</tr>
</tbody>
</table>

AMBE-2000™ Rates

<table>
<thead>
<tr>
<th>Rate Index #</th>
<th>Total Rate</th>
<th>Speech Rate</th>
<th>FEC Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3600</td>
<td>3600</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>4000</td>
<td>4000</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>4800</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>6400</td>
<td>6400</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>8000</td>
<td>8000</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>9600</td>
<td>9600</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>4000</td>
<td>2400</td>
<td>1600</td>
</tr>
<tr>
<td>23</td>
<td>4800</td>
<td>3600</td>
<td>1200</td>
</tr>
<tr>
<td>24</td>
<td>4800</td>
<td>4000</td>
<td>800</td>
</tr>
<tr>
<td>25</td>
<td>4800</td>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>26</td>
<td>6400</td>
<td>4000</td>
<td>2400</td>
</tr>
<tr>
<td>27</td>
<td>7200</td>
<td>4400</td>
<td>2800</td>
</tr>
<tr>
<td>28</td>
<td>8000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>29</td>
<td>9600</td>
<td>2400</td>
<td>7200</td>
</tr>
<tr>
<td>30</td>
<td>9600</td>
<td>3600</td>
<td>6000</td>
</tr>
<tr>
<td>31</td>
<td>2000</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>6400</td>
<td>3600</td>
<td>2800</td>
</tr>
</tbody>
</table>

AMBE-3000F™ Vocoder Chip Rates

<table>
<thead>
<tr>
<th>Rate Index #</th>
<th>Total Rate</th>
<th>Speech Rate</th>
<th>FEC Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>3600</td>
<td>2450</td>
<td>1150</td>
</tr>
<tr>
<td>34</td>
<td>2450</td>
<td>2450</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>3400</td>
<td>2250</td>
<td>1150</td>
</tr>
<tr>
<td>36</td>
<td>2250</td>
<td>2250</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>2400</td>
<td>2400</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>3000</td>
<td>3000</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 119 Rate Index Numbers

<table>
<thead>
<tr>
<th>Index</th>
<th>Rate 1</th>
<th>Rate 2</th>
<th>Rate 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>3600</td>
<td>3600</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>4000</td>
<td>4000</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>4400</td>
<td>4400</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>4800</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>6400</td>
<td>6400</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>7200</td>
<td>7200</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>8000</td>
<td>8000</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>9600</td>
<td>9600</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>2700</td>
<td>2450</td>
<td>250</td>
</tr>
<tr>
<td>48</td>
<td>3600</td>
<td>3350</td>
<td>250</td>
</tr>
<tr>
<td>49</td>
<td>4000</td>
<td>3750</td>
<td>250</td>
</tr>
<tr>
<td>50</td>
<td>4800</td>
<td>4550</td>
<td>250</td>
</tr>
<tr>
<td>51</td>
<td>4400</td>
<td>2450</td>
<td>1950</td>
</tr>
<tr>
<td>52</td>
<td>4800</td>
<td>2450</td>
<td>2350</td>
</tr>
<tr>
<td>53</td>
<td>6000</td>
<td>2450</td>
<td>3550</td>
</tr>
<tr>
<td>54</td>
<td>7200</td>
<td>2450</td>
<td>4750</td>
</tr>
<tr>
<td>55</td>
<td>4000</td>
<td>2600</td>
<td>1400</td>
</tr>
<tr>
<td>56</td>
<td>4800</td>
<td>3600</td>
<td>1200</td>
</tr>
<tr>
<td>57</td>
<td>4800</td>
<td>4000</td>
<td>800</td>
</tr>
<tr>
<td>58</td>
<td>6400</td>
<td>4000</td>
<td>2400</td>
</tr>
<tr>
<td>59</td>
<td>7200</td>
<td>4400</td>
<td>2800</td>
</tr>
<tr>
<td>60</td>
<td>8000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>61</td>
<td>9600</td>
<td>3600</td>
<td>6000</td>
</tr>
</tbody>
</table>

Note
Rate Index #32 is compatible with the AMBE-2000™ Vocoder chip however; it is not part of the AMBE-2000™ Vocoder chip standard rate table.
Index rates #32 to #63 are AMBE+2 mode rates
Index rate #33 is interoperable with APCO P25 Half Rate and DMR (Europe)
7.3 Rate - Control Words / Configuration Pin Settings

<table>
<thead>
<tr>
<th>Total Rate (bps)</th>
<th>Speech Rate (bps)</th>
<th>FEC Rate (bps)</th>
<th>RCW 0</th>
<th>RCW 1</th>
<th>RCW 2</th>
<th>RCW 3</th>
<th>RCW 4</th>
<th>RCW 5</th>
<th>Hardware Pin Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2000</td>
<td>0</td>
<td>0x0128</td>
<td>0x0663</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6428</td>
<td>0 1 1 1 1 1</td>
</tr>
<tr>
<td>2250</td>
<td>2250</td>
<td>0</td>
<td>0x042D</td>
<td>0x0754</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x722D</td>
<td>1 0 0 1 0 0</td>
</tr>
<tr>
<td>2400</td>
<td>2400</td>
<td>0</td>
<td>0x0030</td>
<td>0x0763</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x4330</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>2350</td>
<td>50</td>
<td>0x002F</td>
<td>0x0763</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6930</td>
<td>0 0 0 1 0 1</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>0</td>
<td>0x0430</td>
<td>0x0754</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6930</td>
<td>1 0 0 1 0 1</td>
</tr>
<tr>
<td>2450</td>
<td>2450</td>
<td>0</td>
<td>0x0431</td>
<td>0x0754</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7031</td>
<td>1 0 0 0 1 0</td>
</tr>
<tr>
<td>2700</td>
<td>2450</td>
<td>250</td>
<td>0x0431</td>
<td>0x0754</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x3936</td>
<td>1 0 1 1 1 1</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>0</td>
<td>0x043C</td>
<td>0x0766</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x673C</td>
<td>1 0 0 1 1 0</td>
</tr>
<tr>
<td>3400</td>
<td>2250</td>
<td>1150</td>
<td>0x042D</td>
<td>0x0754</td>
<td>0x2400</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7944</td>
<td>1 0 0 0 1 1</td>
</tr>
<tr>
<td>3600</td>
<td>3600</td>
<td>0</td>
<td>0x0048</td>
<td>0x0767</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6F48</td>
<td>0 0 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>3350</td>
<td>250</td>
<td>0x0043</td>
<td>0x0765</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x5348</td>
<td>0 0 1 0 1 1</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>0x0130</td>
<td>0x0763</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0x04230</td>
<td>0x0048</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>0x0130</td>
<td>0x0763</td>
<td>0x4000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0048</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1200</td>
<td>0x0030</td>
<td>0x0664</td>
<td>0x4000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0048</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>3600</td>
<td>0</td>
<td>0x0248</td>
<td>0x0763</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x3948</td>
<td>0 1 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>2450</td>
<td>1150</td>
<td>0x0431</td>
<td>0x0754</td>
<td>0x2400</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6F48</td>
<td>1 0 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>3600</td>
<td>0</td>
<td>0x0448</td>
<td>0x0766</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6848</td>
<td>1 0 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td>3350</td>
<td>250</td>
<td>0x0443</td>
<td>0x0766</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x3948</td>
<td>1 1 0 0 0 0</td>
</tr>
<tr>
<td>4000</td>
<td>4000</td>
<td>0</td>
<td>0x0050</td>
<td>0x0887</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x3950</td>
<td>0 0 1 1 1 1</td>
</tr>
<tr>
<td></td>
<td>3750</td>
<td>250</td>
<td>0x004B</td>
<td>0x0767</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x3950</td>
<td>0 0 1 1 1 0</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>0</td>
<td>0x0250</td>
<td>0x0765</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x4150</td>
<td>0 1 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>1600</td>
<td>0x0130</td>
<td>0x0763</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0x341A</td>
<td>0x6750</td>
<td>0 1 0 1 1 0</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>0</td>
<td>0x0450</td>
<td>0x0986</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7450</td>
<td>1 0 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>3750</td>
<td>250</td>
<td>0x044B</td>
<td>0x0766</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x4150</td>
<td>1 1 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>2600</td>
<td>1400</td>
<td>0x0434</td>
<td>0x0754</td>
<td>0x2480</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6850</td>
<td>1 1 0 1 1 1</td>
</tr>
<tr>
<td>4400</td>
<td>4400</td>
<td>0</td>
<td>0x0458</td>
<td>0x0986</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x4458</td>
<td>1 0 1 0 0 1</td>
</tr>
<tr>
<td></td>
<td>2450</td>
<td>1950</td>
<td>0x0431</td>
<td>0x0754</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0x4221</td>
<td>0x6C58</td>
<td>1 1 0 0 1 1</td>
</tr>
<tr>
<td>4800</td>
<td>4800</td>
<td>0</td>
<td>0x0060</td>
<td>0x0887</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7960</td>
<td>0 0 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>4550</td>
<td>250</td>
<td>0x005B</td>
<td>0x0887</td>
<td>0x0080</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6860</td>
<td>0 0 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td>3600</td>
<td>1200</td>
<td>0x0048</td>
<td>0x0767</td>
<td>0x2030</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7060</td>
<td>0 0 0 0 1 0</td>
</tr>
<tr>
<td></td>
<td>3100</td>
<td>1700</td>
<td>0x003E</td>
<td>0x0765</td>
<td>0x2800</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7460</td>
<td>0 0 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>4800</td>
<td>0</td>
<td>0x0260</td>
<td>0x0767</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x6C60</td>
<td>0 1 0 0 1 0</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>800</td>
<td>0x0250</td>
<td>0x0765</td>
<td>0x2010</td>
<td>0x0000</td>
<td>0x0000</td>
<td>0x7460</td>
<td>0 1 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>3600</td>
<td>1200</td>
<td>0x0248</td>
<td>0x0763</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0x2412</td>
<td>0x6860</td>
<td>0 1 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>2400</td>
<td>0x0130</td>
<td>0x0763</td>
<td>0x0005</td>
<td>0x180C</td>
<td>0x3018</td>
<td>0x7360</td>
<td>0 1 1 0 0 1</td>
</tr>
</tbody>
</table>
Table Key for and Table 120 Rate Control Words and Pin Settings

<table>
<thead>
<tr>
<th>AMBE-1000™ Rates (AMBE® Vocoder)</th>
<th>AMBE-2000™ Rates (AMBE+™ Vocoder)</th>
<th>AMBE-3000F™ Vocoder Chip Rates (AMBE+2™ Vocoder)</th>
</tr>
</thead>
</table>

NOTE:

1. FEC is a convolutional code
2. This rate is interoperable with DSTAR
3. FEC is a block code
4. This rate is interoperable with APCO P25 Half Rate and DMR / dPMR (Europe).
8 Support

8.1 DVI Contact Information

If you have questions regarding the AMBE-3000™ Vocoder Chip please contact:

Digital Voice Systems, Inc.
234 Littleton Road
Westford, MA 01886 USA

Phone: (978) 392-0002
Fax: (978) 392-8866

email: info@dvsinc.com
web site: http://www.dvsinc.com/
9 Environmental Specifications

(As stated by Texas Instruments Inc. Material Declaration Certificate for Semiconductor Products)

Part Number Details

<table>
<thead>
<tr>
<th>DVSI Part Number</th>
<th>AMBE-3000F™ Vocoder Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI Part Number1</td>
<td>TMS320F2811PBKA</td>
</tr>
<tr>
<td>PN Type1A</td>
<td>Std.</td>
</tr>
</tbody>
</table>

Pb-Free (RoHS) Details

RoHS & High-Temp Compatible	Yes
Conversion Date2	10, October 2005 (DC 0541)
Available Supply Date3	30, March 2006

Green (RoHS & no Sb/Br) Details

Green Compliant	Yes
Conversion Date2	10, October 2005 (DC 0541)
Available Supply Date3	30, March 2006

JIG Rating

| JIG Material Content Compliance4 | Level A & B |

Package Details

<table>
<thead>
<tr>
<th>Package Type</th>
<th>PBK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins</td>
<td>128</td>
</tr>
<tr>
<td>Assembly Site</td>
<td>TI PHILIPPINES A/T</td>
</tr>
<tr>
<td>Current Lead/Ball Finish</td>
<td>CU NIPDAU</td>
</tr>
<tr>
<td>Planned Lead/Ball Finish</td>
<td></td>
</tr>
<tr>
<td>Current MSL/Reflow Ratings</td>
<td>Level-2-260C-1YR</td>
</tr>
<tr>
<td>Device Mass (mg)</td>
<td>615.000</td>
</tr>
</tbody>
</table>

RoHS Restricted Substances4 (JIG Level A)5

<table>
<thead>
<tr>
<th>Substance</th>
<th>ppm</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hex.Chromium (Cr6+)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.0185</td>
<td>0.0185</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PBB's (RoHS defined)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PBDE's (RoHS defined)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JIG Level A

<table>
<thead>
<tr>
<th>All other JIG Level A Substances</th>
<th>ppm</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Environmental Specifications

Green Reportable Substances (JIG Level B)

<table>
<thead>
<tr>
<th>Substance</th>
<th>ppm</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony (Sb)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brominated Flame Retardants (Other than PBBS or PBDEs)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JIG Level B

<table>
<thead>
<tr>
<th>Substance</th>
<th>ppm</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismuth (Bi)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nickel-Exposed (Ni)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All Other JIG Level B Substances</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Recyclable Metals

<table>
<thead>
<tr>
<th>Substance</th>
<th>ppm</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (Cu)</td>
<td>99739</td>
<td>60.2303</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>4990</td>
<td>3.0692</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nickel-Not Exposed (Ni)</td>
<td>4065</td>
<td>2.5002</td>
</tr>
<tr>
<td>Palladium (Pd)</td>
<td>338</td>
<td>0.2084</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>4666</td>
<td>2.8701</td>
</tr>
</tbody>
</table>

Last Update

17, February 2007

Note (1) - Check the Available Supply Dates before ordering. Orders cannot be placed by assembly site.
Note (1A) - PN Type indicates whether a part number is a "Pb-Free" unique PN or a standard TI PN. If you need to order RoHS & high-temp compatible parts and don't want to hassle with date codes, use the "Pb-Free" unique PN when placing orders.

Note (2) - The forecasted or actual conversion date for the specific device package, pin count, & assembly site. See Glossary of Terms for more details. (http://focus.ti.com/quality/docs/prdcmtglossary.jsp?templateId=5909)

Note (3) - The forecasted or actual date that the device will be available for purchase.

Note (4) - If a device's material content is less than the thresholds in the Joint Industry Guide (JIG) Level A & Level B substances tables, then "Level A & B" will be displayed. Other options are "Level A ONLY" or "None". For availability of "Level A & B" devices, use the Green Available Supply Date (ASD). For "Level A ONLY" devices, use the Pb-Free ASD.

Note (5) - ppm calculations are at the homogeneous material level. See Glossary of Terms for more details. http://focus.ti.com/quality/docs/prdcmtglossary.jsp?templateId=5909

Note (6) - ppm calculations are at the component level. See Glossary of Terms for more details. http://focus.ti.com/quality/docs/prdcmtglossary.jsp?templateId=5909

Note (7) - Reflects the date when a change was last detected in the associated row of information. Change monitoring began 2005-08-11.

Important Part Information

There is a remote possibility the Customer Part Number (CPN) your company uses could reference more than one TI part number. This is due to two or more users (EMSIs or subcontractors) using the same CPN for different TI part numbers. If this occurs, please check your Customer Part Number and cross reference it with the TI part number seen on this page.

Product Content Methodology
Environmental Specifications

For an explanation of the methods used to determine material weights, See Product Content Methodology, http://focus.ti.com/quality/docs/gencontent.tsp?templateId=5909&navigationId=11220&path=templatedata/cm/ecoinfo/data/esh_methodology

Important Warranty and Disclaimer Information
TI bases its material content knowledge on information provided by third parties and has taken and continues to take reasonable steps to provide representative and accurate information, but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. TI provides an exclusive warranty for certain material content representations in the Material Declaration Certificate for Semiconductor Products, which can be found at http://focus.ti.com/quality/docs/gencontent.tsp?templateId=5909&navigationId=11219&contentId=5057 All other material content information is provided "as is."
10 IC Chip Software Errata

DVSI reserves the right to make modifications, enhancements, improvements and other changes to the AMBE-3000F™ Vocoder Chip at any time without notice. This errata section provides updated information on software developments as it pertains to the release number and release date. To identify the software release number of the AMBE-3000F™ Vocoder Chip refer to the PKT_VERSTRING field in Section Packet Fields.

Release 002
7/28/2008
Original AMBE-3000F release.

Release 003
9/28/2008
Modified the AMBE-3000F™ to set TXRDY low after a packet is transmitted, and then set it high again if there is already another packet in the buffer awaiting transmission. This prevents the AMBE-3000F™ from having multiple packets in it’s transmit buffer when using the PPT interface and assures that the TXRDY pin is set.

Modified the PPT interface so that if an attempt to read from the PPT is made when the AMBE-3000F™ Vocoder Chip does not have any data available, then the user will read a fixed value (0x34). This should only happen if the user attempts to read from the PPT when TXRDY is low.

To better meet the specifications of Texas Instruments AIC14 Codec the I²C interface was modified to insert a delay between SCL and SDA transitions.

Added more control packet fields as described in the users manual: PKT_WRITEI2C, PKT_SETCODECRESET, PKT_CLEARCODECRESET, PKT_DISCARDCODEC, PKT_DELAYNUS, and PKT_DELAYNNS

Release 004
11/14/2008
Improved the performance of the FEC decoder when Golay codes are used.

Release 005
06/02/2009
Added RTSn signal to support flow control. Flow control allows for better throughput when the AMBE-3000F™ is operated in packet mode.

Added PKT_RTSTHRESH and PKT_GAIN control packet fields. See sections in the user’s manual.

As another form of flow control. If a packet to be transmitted will not fit in the transmit buffer, then wait until it fits. The encoding or decoding of packets is stopped if the transmit is not keeping up. Primarily needed if consecutive channel packets are passed to the AMBE-3000F™ in packet mode.

Packets should only be sent to the AMBE-3000F™ when RTSn is low. If the AMBE-3000F™ receives a packet that does not fit into the receive buffer, it discards the oldest packet, and acts as if it had never received it.

Optimizations to increase speed and reduce power usage.
Allow the use of TXRQST signal for skew control, when the number of samples in a frame is less than 160.
Call Progress tones work around based on rate.

Release 007

09/10/2009

Release 007 improves the quality of single frequency tones and call progress tones for AMBE-1000™ Vocoder Chip compatible rates.

In Release 007 the FEC error mitigation thresholds are set properly regardless of the order the PKT_RATE(T/P) and PKT_INIT fields are sent. When an FEC rate is selected via the rate configuration pins, the error mitigation thresholds are also set to the appropriate value for the selected FEC.

In prior releases, PKT_INIT resets the FEC error mitigation thresholds to 0. Therefore, after sending PKT_INIT it is always necessary to send PKT_RATE or PKT_RATEP to set the error mitigation thresholds to the appropriate value for the selected FEC. For prior releases, if FEC is used, it is necessary to send PKT_RATE or PKT_RATEP in order for the FEC error mitigation thresholds to be set properly. In Release 007, it is not necessary to send PKT_RATE or PKT_RATEP when FEC is used.

For Release 007, packet parity bytes can be disabled at reset using the parity enable pin. Parity can also be disabled using a soft-reset packet (using a PKT_RESETSOFTCFG field) to specify that parity should be disabled.

The parity enable pin can be used to disable parity bytes. This feature was not available in Release 005.

Release 014

08/31/2012

Product ID = <AMBE3000F>

Skew Control. In Release 014, the Skew Control works as described in this manual. This affects customers using codec mode who are using TXRQST to control frame boundaries. No simple workaround is available for older releases.

MCBSP Initialization modification. In Release 014, the MCBSP initialization is properly synchronized with the frame sync signal. This only affects customers who are using codec mode and who have selected the MCBSP as the codec interface. Workarounds are available for older releases.

SPI @ 128 KHz modification. Release 014, resolves the issue of glitches in some decoder output samples when running the SPI @ 128 KHz. This affects customers who are using codec mode and have selected the SPI as the codec interface. A workaround is available for older releases.

cmode LOST_FRAME bit ignored. In this Release 014, the cmode LOST_FRAME bit works as described in this manual. In prior releases the only way to cause a frame repeat was to omit a packet. This affects customers who are using codec mode and who use the cmode LOST_FRAME bit to make the decoder do a frame repeat.
11 History of Revisions

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date of Revision</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td>Oct 7, 2008</td>
<td>Edited Table 39 PKT_COMPAND Field Format</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Table 45 PKT_RATEP Field Example Custom rate words</td>
<td>55</td>
</tr>
<tr>
<td>1.03</td>
<td>Oct 14, 2008</td>
<td>Revised Table 17 SPI Interface Pins pin 31 and pin 32</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Timing Diagram</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Figure 3 AMBE-3000F™ Vocoder Chip Pins for LQFP Package- pin 31 pin 32 and pin106</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Table 1 Pinout List Pins 24 Input description</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Table 1 Pinout List Pins 31 and Pin 32 descriptions</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Table 1 Pinout List Pin 106 Name</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Figure 39 AMBE-3000F™ Vocoder Chip and TLV320AIC14 Interface Block Diagram</td>
<td>47</td>
</tr>
<tr>
<td>1.04</td>
<td>Dec 9, 2008</td>
<td>Added Skew Control (SK_ENABLE TQFP pin 6 BGA pin D3)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Figure 32 Timing of McBSP When Selected as Codec Interface</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Table 22 McBSP Codec Interface Timing</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Table 23 McBSP Packet Interface Timing</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Re-ordered parts of Sections 2 and 3</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>Feb 19, 2009</td>
<td>Edited Skew Control Codec Mode Description</td>
<td>17</td>
</tr>
<tr>
<td>1.06</td>
<td>April 20, 2009</td>
<td>Edited Table 119 Rate Index Numbers to indicate rate #32 is compatible to the AMBE-2000™ Vocoder chip</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Note to explain that the rate require custom Control words for the AMBE-2000™ Vocoder chip</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Table 120 Rate Control Words and Pin Settings to indicate rate #32 is compatible to the AMBE-2000™ Vocoder chip</td>
<td>77</td>
</tr>
<tr>
<td>1.07</td>
<td>June 2009</td>
<td>Added BGA information</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added PKT_RTSTHRESH and PKT_GAIN to Control Packet Fields</td>
<td>60</td>
</tr>
<tr>
<td>1.08</td>
<td>July 2009</td>
<td>Added Single Tone Information to table Table 104 TONE Index Values</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added information on which pins have internal pullup or pulldown</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Table 8 Typical AMBE-3000F™ Vocoder Chip Power Measurements</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed references to Parity Enable Pin 79</td>
<td></td>
</tr>
<tr>
<td>1.09</td>
<td>September 2009</td>
<td>Edited table Table 22 McBSP Codec Interface Timing</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Section Special Handling</td>
<td>3</td>
</tr>
<tr>
<td>Revision Number</td>
<td>Date of Revision</td>
<td>Description</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1.10</td>
<td>October 2009</td>
<td>Edited PKT_VERSTRING Response field description</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Section IC Chip Software Errata</td>
<td>86</td>
</tr>
<tr>
<td>1.11</td>
<td>November 2009</td>
<td>Edited Table 104 TONE Index Values</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited CMODE Field description</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited PKT_INIT Field description</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>April 2010</td>
<td>Various Typographical and Formatting edits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Section 2.7 Crystal / Oscillator Usage</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Sections 3.3 to 3.7</td>
<td>21-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Section 5.5 SPI Interface</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Section 5.7 McBSP Interface</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Section 6.5 Packet Format</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Table 32 Control Packet Fields</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Table 62 PKT_CHANFMT Data Settings</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edits to Table 65 PKT_SPCHFMT Data Settings</td>
<td>70</td>
</tr>
<tr>
<td>2.1</td>
<td>May 2010</td>
<td>Edited TX_RDY description in table 2.5</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>May 2010</td>
<td>Edited DTMF description Section 4.5.3</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>August 2010</td>
<td>Highlighted Note for Rate Table.</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Notes to PKT_CHANFMT and PKT_SPCHFMT Fields</td>
<td>61-62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Table 101 CMODE Parameters Table</td>
<td>72</td>
</tr>
<tr>
<td>2.4</td>
<td>October 2010</td>
<td>Added Custom Rate Interoperable with DSTAR in Table 120 Rate Control Words and Pin Settings</td>
<td>83</td>
</tr>
<tr>
<td>2.5</td>
<td>December 2010</td>
<td>Moved Custom Rate Interoperable with DSTAR in Table 120 Rate Control Words and Pin Settings to show it is an AMBE+™ Vocoder Rate</td>
<td>83</td>
</tr>
<tr>
<td>2.6</td>
<td>March 2011</td>
<td>Corrected hyperlink cross-references and edited Figure 36 Vocoder Front End, Figure 37 Front End Input Filter Mask and Figure 38 Front End Output Filter Mask</td>
<td>47-48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited D-Star rate in Note for Table 120 Rate Control Words and Pin Settings</td>
<td>83</td>
</tr>
<tr>
<td>2.7</td>
<td>April 2011</td>
<td>Edited Figure 40 AMBE-3000F™ Vocoder Chip and PCM3500 Interface Block Diagram</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Note to PKT_GAIN and PKT_GAIN Response Packets</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Table 104 TONE Index Values to show Tone Index value for various Rate Indexes</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Algorithmic and Processing delay details</td>
<td>90</td>
</tr>
<tr>
<td>2.8</td>
<td>August 2011</td>
<td>Removed (pin 57 TQFP) and (pin M9 BGA) from the No Connection section of Table 1 Pinout List</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited dcmode information in Table 62 PKT_CHANFMT Data Settings</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited data response byte -- Table 63 PKT_CHANFMT Response Field</td>
<td>69</td>
</tr>
</tbody>
</table>
History of Revisions

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date of Revision</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>May 2012</td>
<td>Edited Table 26 PPT Timing, Edited Response Field Tables, Added Section 3.6 Reset Behavior, Added Section 4.4 Vocoder State, Edited Section 5.1 Operating Modes Introduction, Added Section 5.2.1 Timing of channel transmit packets in Codec Mode, Added Section 5.6.1 UART_TX Pin State, Edited PKT_PRODID and PKT_VERSTRING description, Modified Table 8 Typical AMBE-3000F™ Vocoder Chip Power Measurements, Edited Chip Markings Information</td>
<td>53, 57-70, 23, 31, 35, 40, 48, 71</td>
</tr>
<tr>
<td>3.0</td>
<td>June 2012</td>
<td>Added section 2.7.3 Input Clock Requirements</td>
<td>28, 20</td>
</tr>
<tr>
<td>3.1</td>
<td>September 2012</td>
<td>Added description of Version Release 014, Added information on Echo canceller initalization</td>
<td>98, 66</td>
</tr>
<tr>
<td>3.2</td>
<td>December 2012</td>
<td>Edited Figure 40 AMBE-3000F™ Vocoder Chip and PCM3500 Interface Block Diagram, Edited Table 54 PKT_CODECCFG Field Example Data (default values shown), Added note regarding moisture sensitivity of the AMBE-3000F™ BGA chip in section 2.1 Special Handling and Moisture Sensitivity</td>
<td>57, 67, 3</td>
</tr>
<tr>
<td>3.3</td>
<td>March 2013</td>
<td>Edited length field and description text for the following tables: Table 115 Speech Packet Example 1; Table 116 Speech Packet Example 2; Table 118 Channel Packet Example 2, Edited PKT_GAIN note</td>
<td>86 - 89, 78</td>
</tr>
<tr>
<td>3.4</td>
<td>April 2014</td>
<td>Edited Figure 40 AMBE-3000F™ Vocoder Chip and PCM3500 Interface Block Diagram</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>December 2015</td>
<td>Edited Section 3.5 Power Sequencing Requirements</td>
<td>22</td>
</tr>
<tr>
<td>3.6</td>
<td>April 2016</td>
<td>Edited Echo Canceller and Ech Suppressor descriptions to include (not supported in Packet Mode)</td>
<td>various</td>
</tr>
<tr>
<td>3.7</td>
<td>October 2016</td>
<td>Edited PKT_GETCFG field description</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>August 2018</td>
<td>Added information regarding Tone generation and detection in Sections 6.7.1, 6.9.1, 6.10, and 6.11</td>
<td>various</td>
</tr>
<tr>
<td>3.9</td>
<td>September 2018</td>
<td>Edited END USER PRODUCT License Agreement</td>
<td></td>
</tr>
</tbody>
</table>

(Since AMBE-3000F™ Vocoder Chip Users Manual Version 3.9, September, 2018)